Paper / Subject Code: 78905 / Linear Algebra Using Python

Q. P. Code: 34331

		(2 ½ Hours)	[Total Marks: 75]			
N.B.	1) All questions are compulsory.					
	2) Figures to the right indicate marks.					
	3) Illustrations, in-depth answers and diagrams will be appreciated.					
		of sub-questions is not allowed.				
	1) 1411/1116	, or sub-questions is not unowed.				
Q. 1	Attempt	All(Each of 5Marks)	(15M			
(a)	Multiple	Choice Questions.				
	i)	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
		a) list $l = list()$ b) list $l = []$ c) list $l = ([1, 2, 3])$ d) All c	of these			
	ii)	The dot product of (1, 2, 3) and (1, −1, 0) is				
		a) 0 b) 2 c) 1 d) -1				
	•••\					
	iii)	The dot product of $(1, 2, 3)$ and $(-1, 1, 0)$ is	7, 20, 80 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		a) 1 b) -1 c) 0 d) 2				
	iv)	is called				
	,	a) A linear System b) Saturated				
		c) Homogeneous d) Non homogeneous	80°7			
	v)	A vector whose norm is 1 is called vector				
	,	a) Null b) Besis c) Unit d) none of t	these			
(b)	Fill in th	e blanks for the following questions				
	(i)	Two vectors are said to be orthogonal if angle between	them is			
	(ii)	The output when we execute list("Hello") is				
	iii)	Set of all linear combinations of vectors is called				
	iv)					
200		matrix.	1			
SON S	v)	To add a new element to a list we use com	mand.			
(c)	Answer the following questions					
SOF T	i)	If $u = (1, 2, -1)$ and $v = (3, 2, -1)$ find norm u and norm v.				
32.00	ii)	Define the term Inner Product Space				
	iii)	Solve (1•1) + (1•0) + (1•1)				
	iv)	Define the term Characteristic equation				
	(V \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Find dot product of (1, 5), (4, −2)				

Q. P. Code: 34331

Q. 2 Attempt the following (Any THREE)

(15M)

- (a) Find the square root of complex number 8 6i
- (b) Determine whether v_1 =(2, 2, 2), v_2 =(0, 0, 3) and v_3 =(0, 1, 1) span vector space \mathbb{R}^3 .
- (c) Write a Python program to find conjugate of a complex number.
- (d) Are the following vectors are linearly dependent $v_1=(3, 2, 7), v_2=(2, 4, 1)$ and $v_3=(1, -2, 6)$
- (e) Express in polar and exponential form $1 + i \sqrt{3}$
- (f) Check whether the set of all pairs of real numbers of the form (1, x) with operation (1, y) + (1, y') = (1, y + y') and k(1, y) = (1, ky) is a vector space.

Q. 3 Attempt the following (Any THREE)

(15M)

- (a) Find the angle between the two vectors a = (2,3,4) and b=(1,-4,3) in IR^3 .
- (b) Let

$$A = \begin{pmatrix} 2 & 2 \\ 1 & 1 \\ 0 & 6 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & 4 \\ 2 & 2 \\ 1 & 0 \end{pmatrix} \qquad c = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \qquad D = \begin{bmatrix} 2 & 4 & 3 & 1 \end{bmatrix}$$

Compute the following if they exists.

- a) A +B b) 3A c) B + 2D
- (c) Write a python program to enter a matrix and check if it is invertible. if invertible exists then find inverse.
- (d) Check whether the set of functions are Linearly independent? $2 x + 4x^2$, $3 + 6x + 2x^2$, $2 + 10x 4x^2$.
- (e) Consider Subspace $U_1\{(x, y, w, z) : x y = 0\}$ and $U_2\{(x, y, w, z) : x = w, y = z\}$ Find a basis and dimension of i) U_1 ii) U_2 iii) $U_1 \cap U_2$.
- (f) If V and W are two subsets of a vector space V such that U is a subset of W then show that W^0 is a subset of U^0 where U^0 , W^0 are annihilator of U and W respectively.

Q. 4 Attempt the following (Any THREE)

(15)

(a) Solve the following system by Gaussian elimination method.

$$y -z = 3$$

 $-2x + 4y - z = 1$
 $-2x + 5y - 4z = -2$

- (b) Find the orthonormal basis for subspace IR⁴ whose generators are $v_1 = (1, 1, 1, 1), v_2 = (1, 2, 4, 5), v_3 = (1, -3, -4, -2)$ Using Gram Schmidt orthogonali sation Method.
- (c) Let a = (3,0), b = (2,1) find vector in span $\{a\}$ that is closet to b is $b^{\parallel a}$ and distance $||b^{\perp a}||$.

Paper / Subject Code: 78905 / Linear Algebra Using Python

Q. P. Code: 34331

- (d) Verify Pythagorean Theorem for u = (1, 0, 2, -4) and v = (0, 3, 4, 2)
- (e) Find inner product, angle, orthogonality for $P = -5 + 2 x x^2$, $q = 2 + 3x^2$
- (f) Write a python program to find orthogonal projection u on v.

Q. 5 Attempt the following (Any THREE)

(15)

(a) Find eigen Values and eigen vectors of

$$A = \left(\begin{array}{ccc} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{array} \right)$$

- (b) Express the following as a linear combination of v_1 =(-2, 1, 3), v_2 =(3, 1, -1) and v_3 =(-1, -2, 1) with w=(6, -2, 5)
- (c) Let $T: |R^3 \to R^2$ be a linear map defined by f(x,y,z) = (x+2y-z, x+y-2z)Verify Rank T + Nullity T = 3.
- (d) Let S be a subset of vector space V. Prove that S^{\perp} is a subspace of V.
- (e) Fill the table.

Vector space		Basis	Dimension
{0}	4	\$\f\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
IR ²		{(1,0),(0,1)}	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
$P_2(x)$	2		2° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8°
M ₂ (IR)	3		67248888
IR	36 T		2000 Dy Dy 2000

