- 1) All questions are compulsory. N.B.
 - 2) All questions carry equal marks.
 - 3) Draw neat, labelled diagrams whenever necessary.

Attempt the following (Any FOUR) 0.1

(20M)

- Write a short note on Deterministic Finite Automaton. (a)
- Consider a Mealy Machine described by the transition table given below. (b) Construct a Moore Machine equivalent to Mealy Machine.

Present	Next State				
State	a		b		
	state	output	state	output	
→ q1	q3	0	q2	0	
q2	q1	1	q4	0	
q3	q2	1	q1	1	
q4	q 4	1	q3	0	

- For the Finite State Machine M, find the acceptibility of the strings (c)
 - i) 10110011
 - ii) 11001100
 - iii) 10100101
 - iv) 11100011
 - v) 10101111

i)	10110011			
ii)	11001100			
iii)	10100101			
iv)	11100011			
	10101111			
			128	
	State	Input		
	Otale	0		
\rightarrow	(Qc)	92	mediani o	
	9:	93	q_0	
	92	90	93	
	93	91	q:	

- If G=({S}, {0,1},P,S) where P consists of S->0S1 | 0A | 0 | 1B | 1, A->0A | 0, (d) B->1B | 1. Find L(G).
- Let $L=\{a^mb^n \mid m \ge 0 \text{ and } n \ge 0\}$ Find grammar for it. (e)
- Write a note on -(f)
 - Type 0 Grammar i)
 - Type 1 Grammar ii)
 - Type 2 Grammar iii)
 - Type 3 Grammar iv)

Attempt the following (Any FOUR) 0.2

(20M)

- Find a reduced grammar equivalent to the grammar G, having production (a)
 - S -> AC | B, A-> a, C->c | BC, E->aA | e.
- Construct a PDA that accepts $L=\{0^n1^n \mid n>=0\}$. (b)

27032 23 VCD- -S.Y.B.Sc.(CS)-SEM-IV-Theory of Computation-75 MKS- 2^{1/2} HRS.

(c) Find out below Automaton M1 and M2 are equivalent to each other or not.

- (d) Explain the Identities for Regular Expressions.
- (e) What is ambiguity in Context Free Grammar? If G is the Grammar whose production rule is S->SbS | a. Show that G is ambiguous.
- (f) Construct a Regular Expression corresponding to the state diagram described in figure below.

Q. 3 Attempt the following (Any FOUR)

(20M)

- (a) Write a note on Linear Bound Automata model.
- (b) Consider the Turing Machine M described by the transition table given below. Describe the processing of string 0011.

- (c) Explain Mutlitape and Multitrack variant of Turing Machine.
- (d) Write a note on Language Decidability.
- (e) Explain Church-Turing Thesis.
- (f) What is halting problem of Turing Machine?

Q. 4 Attempt the following (Any FIVE)

(15M)

(a) Construct a deterministic finite automaton equivalent to, $M=(\{q0,q1,q2\},\{a,b\},\delta,q0,\{q2\})$ Where δ is given by

State/∑	a	b
→q0	q0, q1	q2
q1	q0	q1
q2		q0, q1

- (b) Write note on Phase Structure Grammar.
- (c) Describe following sets by regular expression.
 i) Set of all strings of 0's and 1's ending in 00.
 - ii) Set of all strings of 0's and 1's beginning with 0 and ending with 1.
 - iii) Set of all strings of 0's and 1's whose length is odd.
- (d) What is derivation tree? Define Leftmost Derivation Tree and Rightmost Derivation Tree.

- (e) Explain transition table representation method of Turing machine.
- (f) Write note on Turing Machine.

Page 3 of 3