- 1) The relation between permutation and combination is _____.
 - a) C(n, r) = r! P(n, r)
 - b) C (n, r) = $\frac{1}{r!}$ P (n, r)
 - c) C(n, r) = r! + P(n, r)
 - d) C (n, r) = $\frac{r!}{P(n,r)}$
- 2) Which of the following statement is true?
 - a) $(x + y)^n = \binom{n}{i} x^i y^{n-i}$
 - b) $(x + y)^n = \binom{n}{i} x^i y^{n+i}$
 - c) $(x + y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$
 - d) $(x + y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n+i}$
- 3) The coefficient of x^3y^2 in the expansion of $(x + y)^5$
 - a) 10
 - b) 20
 - c) 5
 - d) 1
- the 、 4) Number of solution to the equation $x_1 + x_2 + \dots + x_n = m$, where $x_i > 0$ is,

a)
$$\binom{m-1}{n-1}$$

 $b\binom{n-1+m}{n-1}$ c) $\binom{n-1+m}{m}$

$$d\binom{m-1}{n}$$

- 5) The value of $|A \cup B| =$ _____
 - a) $|A| |B| |A \cap B|$
 - b) $|A| + |B| + |A \cap B|$
 - c) $|A| + |B| |A \cap B|$
 - d) |A| + |B|
- 6) Which of the following statement is true?
 - a) Every non-empty subset of positive integers has least element
 - b) Every non-empty subset of positive integers has greatest element
 - c) Every subset of positive integers has least element
 - d) Every subset of positive integers has greatest element
- 7) P (1) is not true for which of the following statement
 - a) n(n-1) is divisible by 3
 - b) n(n+1)(n+2) is divisible by 6
 - c) $8^n 3^n$ is divisible by 5
 - d) n(n+1) is divisible by 2
- 8) $n_{C_0} + n_{C_2} + n_{C_4} + \dots \dots =$ _____.
 - a) 2ⁿ
 - b) 2^{n-1}

- c) 2^{*n*+1}
- d) 2
- 9) Total number of subsets of $X = \{1\}$ are
 - a) 0
 - b) 1
 - c) 2
 - d) Subsets are not exist

10) In a graph If two vertices are connected by atmost one line, then the graph is _____.

- a) Simple
- b) Multigraph
- c) Loop
- d) Digraph

11) In a graph If two vertices are connected by more than one line, then the graph is

- a) Simple
- b) Multigraph
- c) Loop
- d) Digraph

12) A graph in which an edge from vertex to itself, is called_____.

- a) Simple graph
- b) Loop graph
- c) Cycle
- d) Wheels

13) If G(V,E) be a graph and H(V_1, E_1) be a subgraph, then _____ es.

- a) $|V_1| \le |V|$ and $|E_1| \le |E|$
- b) $|V_1| = |V|$ and $|E_1| \le |E|$
- c) $|V_1| < |V|$ and $|E_1| \le |E|$
- d) $|V_1| \neq |V| and |E_1| \leq |E|$

14) A vertex with degree zero is called _____.

- a) Odd vertex
- b) Pendent vertex
- c) Isolated vertex
- d) Zero vertex
- 15) A graph is complete if _
 - a) There is a path between every pair of vertices
 - b) Every vertex is connected to each and every other vertices
 - c) There is a path from a to b and b to a, for every pair of vertices
 - d) There is a path from a to b but not from b to a, for every air of vertices
- 16) If G is Planar connected graph with 'e' edges and 'v' vertices, then no. of regions in planar representation is .
 - a) e+v-2
 - b) e-v-2
 - c) e+v+2

d) e-v+2

- 17) Following graph is not planar
 - a) Complete graph K_3
 - b) Cycle C_4
 - c) Complete graph K_4
 - d) Complete bipartite graph $K_{3,3}$

18) Chromatic number of complete bipartite graph $K_{m,n}$ = _____.

- a) 1
- b) 2
- c) m
- d) n
- 19) Number of edges in graph with 10 vertices each of degree 6 is _____.
 - a) 60
 - b) 30
 - c) 40
 - d) 50
- 20) Prim's algorithm is used to find
 - a) Spanning tree
 - b) Minimum spanning tree
 - c) Spanning subgraph
 - d) Induced subgraph
- 21) In a network flow, ____
 - a) Inflow (v) = outflow (v), for all $v \in V \{s,t\}$
 - b) Inflow (v) = outflow (v), for all $v \in V$
 - c) Inflow (v) = outflow (v), for all $v \in V \{s\}$
 - d) Inflow (v) = outflow (v), for all $v \in V \{t\}$
- 22) What is the sink?
 - a) A vertex with no leaving edges
 - b) A vertex with no coming edges
 - c) Centre vertex
 - d) A vertex with least weight

23) What is the value of maximum flow in the following network?

- a) 5
- b) 7
- c) 8
- d) 9

24) Relation between flow and capacity is _____.

- a) Flow f(x, y) = Capacity c(x, y)
- b) Flow f(x, y) < Capacity c(x, y)
- c) Flow f(x, y) > Capacity c(x, y)
- d) Flow $f(x, y) \leq Capacity c(x, y)$

25) The value of flow in a network flow is_____.

- a) Inflow (S)
- b) Inflow(t)
- c) Inflow(v) where $v \neq s$
- d) Inflow(v) where $v \neq t$