VCD 92 10 19 SYCS C.G.T / SEM-III (Choice Based)

Instructions: 1) All questions are compulsory.

Marks:75 2½ Hours

	2) Figures to right3) Illustrations, in4) Mixing of all of	n-depth answers	and diagram will	be appreciated.
Q.1. Attempt All (E	ach of marks)			(15
a) Select correct an	swer from the follow	ving.		
1) mat	rix is symmetric.			
i) Adjacency	ii) Incidence	iii) Path	iv) Scalar	solin) spring og
2) If terminal vertic	es are same in walk	then it is called	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
i) open walk	ii) close walk	iii) path	iv) trail	
3) A vertex with dea	gree one is called			
i) Isolated	ii) pendent iii)	adjacent	iv) incident	
4) For all positive in	ntegers $n, n^3 + (n+1)^3 +$	(n+2) ³ is divisib	le by	
i) 7 ii) 9	iii) 8	iv) 11		
5) The ford Fulkers	on labeling algorithm	n is used for find	ding	flow in a network.
i) maximum	ii) minimum	iii) negative	iv) zero	0
b) Fill in the blanks.		,(20	
(Intermediate, $\binom{n}{L}$)	, Sequence, isomor	phic, odd vertice	es)	
1) Any two paths wi	th the same number	of vertices are _		
2) If X is set of num				
3) give	coefficient of $x^i y^{n-1}$	in expansion of	$(x+y)^n$.	
4) An Undirected gra	aph has even numbe	r of	_	
5) V, and Vn are cal	led terminal vertices	and remaining	are called	vertices.
c) Short answers.				
1) Connected graph				
2) Permutation				
3) Pascal's Identity				
4) Hamilton circuit				-

5) Augmenting path

Q.2. Attempt the following (Any three)

- a) Give combinatorial arrangement proves that $k\binom{n}{k} = n\binom{k-1}{k-1}$
- b) find the coefficient of x^2y^2z in the expansion of $(2x 3y + 4z)^5$ also find no. of terms and sum of all coefficient.
- c) Find all non-negative integer solution to the equation $x_1+x_2+x_3+x_4+x_5 \le 40$.
- d) Show that for all positive integers n, 3^{2n} -1 is divisible by 8.
- e) How many integers solutions are there for a equation $x_1+x_2+x_3+x_4=32$ all $x_1>0$ and $x_2\leq 13$
- f) Let an be the recursive relation defined by an=2an-1+an-2, $n \ge 2$ with intial condition ao=1, a1=2 prove that an $\le {5 \choose 2}^n$
- Q.3. Attempt the following (Any three)

(15)

a) Determine if the following graphs are isomorphic

- b) Draw a tree whose priifer (T)= 23134
- c) Write incidence and adjacency matrix of the following graph.

d) Define spanning subgraph. Draw any two non-isomorphic spanning sub graph of the following graph.

S.

- e) A connected planner simple graph has 20 vertices each of degree 3. How many regions thus planner representation of this planner graph split the plan.
- f) If G is complete graph on 10 vertices then find the number of cycle in G.

Q.4. Attempt the following (Any three)

a) Find maximum flow of below networl.

- b) Explain matching in bipartite graphs.
- c) Write Permutation shown below in cycle notation compute $\prod_1 \prod_2$ (product) of two permutation and inverse of $\prod_1 \prod_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 5 & 8 & 2 & 6 & 4 & 7 \end{pmatrix} \prod_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 1 & 6 & 8 & 4 & 2 & 5 \end{pmatrix}$
- d) Explain flows and cuts.
- e) What is complete matching? Explain with an example?
- f) Explain Augmenting path with examples.

Q.5. Attempt the following (Any three)

(15)

(15)

- a) In how many ways we can arrange the letters in WORD TELECOMMUNICATION? How many of these arrangements have no adjacent E'S?
- b) Find priffer (T) of the following tree.

c) Using kruskal's Algorithm, find shortest spanning tree of the following graph, also find weight of the shortest spanning tree.

d) What is a combination? Prove that.

$$\binom{2n}{2} = 2\binom{n}{2} + n^2$$

e) For the following graph find.

- 1. Any two path from u1 to u5
- 2. Any two walk from u1 to u5
- 3. Any two cycles containing u3
- 4. Path of length 6 from u1 to u4
- 5. Vertex of distance 3 from u4.