VCD - STOS MATHS I- SYBSC - SEM III ATKT EXAM - 73 MKS - 2 HRS

Note:: 1) All questions are compulsory.

- 2) For Q.1, Q.2, Q.3, attempt any one subquestion (each 8 mks) from part (a), and any three subquestions (each 4 mks) from part(b)
- 3) For Q.4 Attempt any three (each 5mks)
- Q.1 (a) Attempt any one

[Each 8

- 1) Prove that if x > 0, y > 0 then i) $\exists n \in IN$ such that x < ny ii) $\exists n \in IN$ such that $0 < \frac{1}{n} < y$ iii) $\exists n \in IN$ such that $n 1 \le x < n$.
- 2) State and prove Nested Interval Property for IR
- Q.1 (b) Attempt any three.

[Each 4]

- 1) Prove that if S is a set bounded above, it cannot have two suprema.
- 2) State and prove the Triangle inequality for IR
- 3) Prove that if $x \in \mathbb{R}$ then there is $n \in \mathbb{N}$ such that x < n.
- 4) Find least upper bound & greatest upper bound for S

where
$$S = \{ x \in IR / x^2 - x - 6 < 0 \}$$

Q.2 (a) Attempt any one

[Each 8]

- 1) State and prove Bolzano Weierstrass theorem of IR
- 2) Define monotone increasing and monotone decreasing sequence. Also prove that every monotone increasing sequence converges to upper bound if bounded above.
- Q.2 (b) Attempt any three.

[Each 4]

- 1) When is a sequence (a_n) of IR $(n \in IN)$ said to be convergent? Using $\epsilon \delta$ definition, show that $\binom{n+1}{n+2}$ is convergent and its limit is 1.
- 2) Define Limit Superior and Limit inferior and Lim sup and Lim inf of i) $\left\{\frac{1}{n}\right\}$ ii) $(-1)^n n$.
- 3) Define a Cauchy sequence in IR and prove that n^3 is not a Cauchy sequence in IR.
- 4) Examine whether following sequences are bounded or not?

i)
$$x_n = \frac{4}{n+2}$$
 ii) $a_n = 3n^2 + 6$.

Q.3 (a) Attempt any one

[Each 8]

- 1) State and prove Cauchy's criterion of convergence of series $\sum a_n$
- 2) Find fourier series of $f(x) = x^2$ in $[-\pi, \pi]$.
- Q.3 (b) Attempt any three.

[Each 4]

- 1) Let $\sum a_n, \sum b_n$ be convergent series converging to a,b respectively then if $\alpha \in IR$ is fixed and $c_n = \alpha a_n$ then prove that $\sum c_n$ is convergent, converging to αa .
- 2) Determine convergence of series $\sum_{n=2}^{\infty} \frac{\cos n\pi}{\sqrt{n}}$
- 3) State and prove Modified ratio test for series $\sum_{n=1}^{\infty} a_n$.
- 4) State Cauchy's Root test and examine the convergence of $\sum \frac{4^n}{n^2}$.
- Q.4 Attempt any three

[Each 5]

- 1) Prove that If x & y are real numbers with x < y then there exists an irrational number z such that x < z < y.
- 2) State and prove that Hausdorff Property of IR.
- 3) State and prove Sandwich Theorem.
- 4) Examine whether following sequences are bounded or not?

i)
$$x_n = \frac{4}{n+2}$$
 ii) $a_n = 3n^2 + 6$.

5) Define the power series and the radius of convergence of power series

and find the radius of convergence for $\sum \frac{1}{n3^n} x^n$.

6) State Comparison test for convergence of series and Examine the convergence

of the series
$$\sum \frac{n}{n^2 - \cos^2(n)}$$
.