Sem-III(3) 2015-16

Attempt any four: Q. 1

- a) State the inclusion exclusion principle. How many positive integers not exceeding 100 are divisible by 3, 5 or 7?
- b) State the sum and product rule. How many bit string are there of length 8? Also find how many of them are many of them ends with two bits 00?
- c) State the Binomial theorem. Use it to prove:
 - (i) $\binom{n}{k=0} \binom{n}{k} = 2^n$, for non negative integer n.
 - (ii) $\bigwedge_{k=0}^{n} {n \choose k} 2^k = 3^n$, for non negative integer n.
- d) State the Vandermonde's identify. Use it to prove $\binom{2n}{n} = \int_{k=0}^{n} \binom{n}{k}^2$ for non-negative integer n.
- e) State and prove Pascal's identity.
- Define the term Grammer. Explain the types of Grammer.
- Define the term:
 - (i) Turning Machine
 - (ii) Finite state automata
 - (iii) Types of languages.
- h) Consider following FSA. Find states, input letters, initial state, accepting state, $f(S_1, b)$. Also write it's state table.

20

Q. 4 Attempt any three:

- a) Solve the recurrence relation $an = 3a_{n-1} + 2n$.
- b) Write a note on Tower of Hanoi.
- e) Define:
 - (i) Ordered rooted tree
 - (ii) Linked list representation using vertex and edge file.
- d) State the extended pigeonhole principle. Show that if seven colours are used to paint 60 bicycles atleast 9 bicycles will be of the same colour.
- e) A family of 4 brothers and 3 sisters are to be seated for photograph in one row. In how many ways can they selected if:

ider of your series in to prave

- (i) all sisters are sit together.
- (ii) no two sisters sit together
- f) (i) Define a tree on 5 vertices with a suitable example.
 - (ii) Perform inorder search on the following tree using inorder search algorithm.

—— The End ——