- 1) A variable which can assume finite or countably infinite number of values is known as____.
 - a) continuous
 - b) discrete
 - c) qualitative
 - d) Quantitative

2) For Probability mass function, following condition /conditions satisfied

- a) $P(x_i) \ge 0$
- b) $\sum P(x_i) = 1$
- c) $P(x_i) \ge 0$ and $\sum P(x_i) = 1$
- d) $P(x_i) \ge 0$ or $\sum P(x_i) = 1$
- 3) The cumulative distribution function ranges from _____.
 - a) 0 to ∞
 - b) 0 to 1
 - c) -1 to 1
 - d) $-\infty to + \infty$
- 4) Which of the following statement is false for cumulative distribution function F(x)?
 - a) F(x) is non-decreasing function
 - b) F(x) ranges from 0 to 1
 - c) $F(x) = P(X \ge x)$
 - d) $F(x) = P(X \le x)$
- 5) The value of expected value E(x) is equal to _____
 - a) Mean
 - b) Variance
 - c) Standard deviation
 - d) Covariance
- 6) Which of the following statement is false for Variance?
 - a) Var (a x) = $a^2 Var(x)$
 - b) Var (c) = 0, where c is constant
 - c) Var(ax + b) = a Var(x)
 - d) Var(x+b) = Var(x)
- 7) In Binomial probability distribution, the successive trials are ______.
 - a) Dependent
 - b) Independent
 - c) mutually exclusive
 - d) fixed
- 8) which of the following is true for normal curve.
 - a) Only symmetric
 - b) Only unimodal
 - c) Only bell-shaped
 - d) Symmetric, unimodal, bell-shaped

9) If 'm' is the mean of a Poisson Distribution, the variance is given by _____

a) 1/m

- b) m²
- c) m
- d) m/2
- 10) t distribution has _____parameter.
 - a) Two
 - b) Only one
 - c) Zero
 - d) No fixed
- 11) Any hypothesis which is tested for the purpose of rejection under the assumption that it is true is called_____
 - a) Null hypothesis
 - b) Alternative hypothesis
 - c) Statistical hypothesis
 - d) Composite hypothesis
- 12) The probability of rejecting the null hypothesis when it is true is _____
 - a) Level of confidence
 - b) Level of significance
 - c) Power of the test
 - d) Difficult to tell
- 13) Test of hypothesis Ho: μ = 50 against H1: μ > 50 leads to_____
 - a) Left-tailed test
 - b) Right-tailed test
 - c) Two-tailed test
 - d) Difficult to tell
- 14) The probability associated with committing type-I error is_
 - a) β
 - b) α
 - c) $1-\beta$
 - d) $1-\alpha$
- 15) Analysis of variance is a statistical method of comparing the ______ of several populations.
 - a) standard deviations
 - b) variances
 - c) means
 - d) proportions
- 16) The number of independent values in a set of values is called:
 - a) Test-statistic
 - b) Degree of freedom
 - c) Level of significance
 - d) Level of confidence
- 17) In Student's t distribution , H0 is accepted if _____.
 - a) P<α

- b) $P > \alpha$
- c) $P \leq \alpha$
- d) $P \ge \alpha$

18) When testing for serial randomness, we can use_____

- a) Mann-Whitney U test
- b) sign test
- c) Run test
- d) Kruskal wallis test

19) Parametric test _____Standard Deviation.

- a) Always follow
- b) Never follow
- c) May follow
- d) Difficult to tell

20) Following test is used when population Standard deviation is unknown.

a) t-test

- b) F-test
- c) Chi-square test

d) Z-test

- 21) Which of the following statement is true for Non-parametric tests?
 - a) follows standard distribution
 - b) Less accurate than non-parametric tests
 - c) Used for large sample size
 - d) Used for ratio data

22) Which of the following non-parametric is equivalent of an un-paired samples t-test ?

- a) Sign test
- b) Wilcoxon sign -rank test
- c) Mann- Whitney U test
- d) Kruskal-Wallis test

23) In testing for the difference between two population, it is possible to use_____

- a) Wilcoxon rank-sum test
- b) Sign test
- c) Either Wilcoxon rank-sum test or sign test
- d) Neither Wilcoxon rank-sum test nor sign test

24) Non-parametric tests not include

- a) Student's t-test
- b) Chi-squared test
- c) Wilcoxon signed rank test
- d) Mann-Whitney U test

25) χ^2 variable for 2x2 table is defined as,

a)
$$\chi^2 = \frac{n(ad-bc)^2}{(a+c)(b+d)(a+b)(c+d)}$$

b)
$$\chi^2 = \frac{(ad-bc)^2}{(a+c)(b+d)(a+b)(c+d)}$$

c)
$$\chi^2 = \frac{n(ad-bc)}{(a+c)(b+d)(a+b)(c+d)}$$

d)
$$\chi^2 = \frac{(ad-bc)}{(a+c)(b+d)(a+b)(c+d)}$$