- 1. All questions are compulsory.
- 2. All questions carry equal marks.
- 3. Draw neat, labeled diagrams wherever necessary.

1. Attempt the following (Any four)

(20 M)

- a. Prove that the function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = \frac{2x-3}{7}$ is a bijective. Hence find its inverse.
- b. Let $f(x) = x^3$, g(x) = x 5 are the functions Find i) fog and gof ii) fog(-2) and gof(4)
- c. Let $A = \{1,2,3\}, B = \{a,b,c\}$ and $C = \{x,y,z\}$. Consider the following relations R and S from A to B and B to C respectively. $R = \{(1,b), (2,a), (2,c)\}\ and\ S = \{(a,y), (b,x), (c,y), (c,z)\}.$ Find SoR, M_R , M_S and M_{SoR}
- d. Let R be the relation on the set $A = \{2,4,8,16,32\}$ where $R = \{(a,b), a \mid b\}$ Draw the Hasse diagram
- e. Solve the following linear homogeneous recurrence relation

$$a_n = 3a_{n-1} + 4a_{n-2}$$
, $a_0 = 1$, $a_1 = 1$, $n \ge 2$

f. Let $a_n = 2^n + 5(3^n)$ for n = 0,1,2...Show that i) $a_2 = 5a_1 - 6a_0$ ii) $a_3 = 5a_2 - 6a_1$

2. Attempt the following (Any four)

(20 M)

- a. How many 4-digit codes can be formed using the digits 0-9 if
 - i) repetition of digit is not allowed
 - ii) repetition of digit is allowed
- b. How many positive integers not exceeding 100 are divisible either by 4 or by 6?
- c. In an urn contains 15 balls out of which 8 are white and 7 are black. In how many ways can 5 balls be selected so that atmost 3 are black?
- e. What is the coefficient of $x^{12}y^5z^{13}$ in the expansion $(x + y + z)^{30}$
- f. Let M be the FSM defined by the following state table:

7		
F	A	В
$\rightarrow s_0$	S_1, X	s_2, y
S_1	s_3, y	S_1, Z
Sz	S_1, Z	s_0, x
S ₃	S_0, Z	S_2, χ

Find i) states

- ii) input letters
- iii) output letters
- iv) initial state

 $v) f(s_3, a)$

- vi) draw the state diagram
- 3. Attempt the following (Any four)

a. Write the adjacency structure for the following graph:

(20 M)

b. Construct the tree from the algebraic expression:

 $(((a \times b) - c) \wedge d) - ((e \times f) + g)$

c. Perform preorder, postorder and inorder search for the following tree:

- d. Define path, cycle, trail with a suitable example.
- e. For the following graph apply BFS taking S as starting vertex

- f. Define terms related to graph
 - i) adjacent vertex
- ii) degree of a vertex
- iv) loop
- v) incidence

iii) pendent vertex

4. Attempt the following (Any five)

a. Define partial order set and transitive. b. Show that $a_n = 1$ is not a solution the of the recurrence relation $a_n = 8a_{n-1} - 16a_{n-2}$

- c. Define sum and product rule.
- d. In how many arrangement of the word LETTER contains the two T's together?
- e. Form a binary search tree for the following: The, hungry, rabbit, eats, quickly
- Consider the FSA defined by the state diagram. Find its state table.

XXXXX