[Additional Exam]

Biotechnolog SYBSC

06/05/2015 BIOTECHNOLOGY-II S.Y.B.Sc. SEM IV EXAM MARKS 75 21/2 HRS (80)

All questions are compulsory.

Draw diagram wherever necessary

QI(A) Explain the terms (any three)

(06)

1. Proposita

VCD-

- 2. Ascus
- 3. Tetratype

4. Heterokaryon

- Linked genes
- 6. Cis configuration

QIB) Give symbols used in pedigree for (any two) of the following

(02)

- 1. Proband
- 2. Carrier female 3. Heterozygote Male
- 4. Dizygotic twins

QIC) Attempt (any two) of the following

questions:following answer the and the following pedigree

- Which individual is the proband? i.
- What is the mode of inheritance? ii.
- What is holandric trait? iii.
- What are the characteristics of the condition hypertricosis? iv.
- The hormone found in males for expressing secondary sexual characteristics? ٧.
- Why are males referred as hemizygous for Y chromosome? vi.
- 2. Describe the formation of PD, NPD and TT tetrads at four strand chromatid stage for linked genes.
- 3. How will you establish gene order using a three point cross, explain with a suitable example
- 4. Solve:- A Neurospora strain that required argenine (arg) but can synthesize methionine (met +) for growth was mated to a strain (arg+ and met) following products were obtained.

A KALLA	1 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2	3 version	4	5 -	6	1+000
Spore pair 1	arg +	arg met	arg met	arg + voice	arg +	arg met	arg met
Spore pair 2	arg +	arg met	arg +	+ met	+ met	+++	arg +
Spore pair 3	+ met	+ +	+ met	arg met.	arg +.	arg met	+ met
Spore pair 4	+ met	++. 3.0	+++====================================	++ 0.000	+ met	++	+++
TOTAL	45	10	10	5	15	5	10

Q II. (A) State whether the following statements are true or false. (any two). (2)

- 1. The 5' to 3' DNA strand complementary to template strand is known as non-template strand.
- 2. The stop codons are used to specify the end of translation of a polypeptide chian.
- 3. In prokaryotes, the initiator methionine is a modified form of methionine known as formylmethionine.
- 4. The enzyme transformylase adds the formyl group to the methionine resulting in fMettRNA.fMet.

Q II. (B) Explain the following terms. (any three)

(6)

1. Translation.

4. Degeneracy of Code.

2. Non Template Strand.

- 5. Aminoacylation.
- 3. Promoter proximal elements.
- 6. Reverse Transcription.

Q II. (C) Answer (any two) of the following.

(12)

- 1. Explain the process of Initiation of Translation in E. coli.
- 2. Explain the process of Elongation, Termination of Transcription in prokaryotes.
- 3. Write in brief about the production of aminoacyl-tRNA with diagram.
- 4. Describe the action of RNA dependent DNA polymerase.

Q III(A) Fill in the blanks (Any four).

(4)

- is known as sexual differences which are clearly evident from external observation. (Generic control, sexual dimorphism, sex determination, autosomes)
- 2. X and Y chromosomes are called as(Autosomes, sex chromosomes, defective chromosomes, useless chromosomes).
- 3. Mitochondrial ribosomes consist of...... Subunits. (Four, one, two, eight).
- 4. For protein synthesis, only......... Mitochondria use the "universal" nuclear genetic code. (Plant, animal, fungi, archaebacterial).
- 5. The XO method of sex determination is similar to the XY method but the absence of

6.	. In uniparental inheritance, all progeny h	ave the phenotype of only Parent. (T	wo, none			
7.	both, one). The electron transport chain driv	es cellular production by	oxidative			
0	phosphorylation. (Water, proton, ATP, electron). In majority of birds, the sex is determined by method.(ZW, XO, XY, XX)					
	III. (B) Explain the following terms (a					
1.	Dioecious organisms.	3. Barr bodies.				
2.	Sex chromosomes.	4. Intersex.				

Q III. (C) Answer in brief (any two).

(12)

- 1. How does sexual differentiation in dioecious organisms take place? Explain with a suitable example.
- 2. Explain: chromosomal mechanism of sex determination: XX-XY method.
- 3. Discuss: non-Mendelian inheritance in mutant of yeast.
- 4. Give a brief note on structure, functions and replication of extranuclear DNA in mitochondria.

Q IV. Write a note on (any Three) of the following.

(15)

- 1. Mitochondrial DNA defects.
- 2. Environmental control of sex determination in Crepidula.
- 3. 5' capping and 3' poly(A) tail of mRNA.
- 4. Termination of Translation.
- 5. Pedigree analysis and its importance in genetic counselling.
- 6. Neurospora crassa sexual life cycle.
