2 ¹/₂ Hours

Total Marks: 75

15

- 1. Attempt all questions.
- 2. All questions carry equal marks.
- 3. Draw **neat labeled diagrams** wherever necessary.
- 4. Use of log tables and non-programmable calculator is allowed.
- 5. For Q 2, Q 3 and Q 4 attempt A and B OR C and D.

Q1 Do as directed (Any fifteen)

- 1. Precursor amino acid for biosynthesis of serotonin is _____.
- Synthesis of glucose from non-carbohydrate precursors is accomplished by a pathway called ______.
- 3. The number of NADPH produced when one molecule of Glucose 6phosphate completes oxidative phase of HMP shunt is _____.
- 4. Give one example of glucogenic amino acid.
- 5. Name one enzyme of Glyoxalate cycle that is not present in vertebrates.
- 6. Name the organ in which urea is produced in humans.
- 7. Give one example of energy rich compound.
- State True / False: Non-oxidative deamination of histidine releases ammonia.
 Write the equation for the reaction catalysed by following enzymes: -
- 9. Citrate synthase.
- 10. Glutamate dehydrogenase.

Name the enzyme that catalyses the conversion of following reactions: -

- 11. Arginine to ornithine.
- 12. Glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate.
- 13. The reactions of ketone body formation occur in the matrix of
 - a. kidney mitochondria b. liver mitochondria
 - c. kidney cytosol d. liver cytosol
- 14. The absence of Hypoxanthine-Guanine Phosphoribosyl Transferase
 - activity is observed in _____.
 - a. Lesch-Nyhan syndrome
- b. Zellweger syndrome
- c. Refsum's disease d. X-linked adrenoleukodystrophy

Paper / Subject Code: 79001 / Biochemistry

15.	are lipid-binding prote	are lipid-binding proteins in the blood which transports		
	triacylglycerols, phospholipids, cholesterol, and cholesteryl esters between organs.			
	a. Apolipoproteins b.	Lipases		
	c. Carboxylases d.	Chylomicrons		
16.	The fatty acyl group is enzymatically transferred from Carnitine to intra-			
	mitochondrial Coenzyme A by	·		
	a. Carnitine Acyltransferase II, b.	. Lipase,		
	b. Carboxylase, d.	Carnitine Acyltransferase I		
17.	Propionyl-CoA is first carboxylated to f	form the D stereoisomer of methyl		
	malonyl-CoA by			
	a. Propionyl-CoA Carboxylase, b. M	Methylmalonyl-CoA Epimerase,		
	c. Methylmalonyl-CoA Mutase, d. 7	Thiolase		
18.	Branched fatty acids are catabolized in j	peroxisomes of animal cells by		
	a. ω oxidation b. α oxidation	c. β oxidation d. μ oxidation		
19.	Phosphorylation of permit	s hormone sensitive lipase access		
	to the surface of the lipid droplet.	0.		
	a. perilipin b. triacylglycerols c.	carnitine d. acyl-CoA		
20.	D. The overall equation of Palmitoyl-CoA beta oxidation is: Palmitoyl-CoA + 7CoA + 7FAD + 7NAD ⁺ + 7H ₂ O \rightarrow + 7FADH ₂ + 7NADH + 7H ⁺			
	a. 8 Acetyl-CoA b.	. 7 Acetyl-CoA		
	c. 14 Acetyl-CoA d.	16 Acetyl-CoA		
Q. 2 A	Discuss the reactions involved in the no	n-oxidative phase of the pentose	08	
	phosphate pathway.			
Q. 2 B	Explain the regulation of glycolysis path	nway.	07	
OR				
Q. 2 C	With the help of a neat labelled diagram	explain the structure and	08	
	mechanism of rotary motor model for ATP generation.			
Q. 2 D	Describe the Glyoxalate cycle and add a note on its significance.		07	

Paper / Subject Code: 79001 / Biochemistry

Q. 3 A	Justify: Amino acids are degraded to metabolites that integrate into Krebs	
	cycle.	
Q. 3 B	Discuss the metabolic disorders associated with defects in urea cycle.	07
	OR	
Q. 3 C	Describe the mechanism of Transamination of amino acids.	
Q. 3 D	Explain the structure of glutathione and state its significance.	
Q. 4 A	Describe beta oxidation of saturated fatty acids.	08
Q. 4 B	Give detailed account of Purine catabolism.	07
	OR	
Q. 4 C	Elaborate reactions involved in the α -oxidation of a branched-chain fatty acid.	08
Q. 4 D	Explain three additional reactions involved in complete oxidation of odd	07
	number fatty acid.	
Q. 5	Write Short notes on any three of the following:	15
a.	Metabolic disorders associated with pentose phosphate pathway.	
b.	Role of coenzyme Q in ETC.	
c.	Non oxidative deamination.	
d.	Role of Cyclic AMP-dependent protein kinase (PKA)	
	in triacylglycerol mobilization.	
e.	ω - oxidation of fatty acid.	