2 ½ Hours

	2 /2 110013
	Total Marks: 75
1.	Attempt all questions.
2.	All questions carry equal marks.
3.	Draw neat labeled diagrams wherever necessary.
4.	Use of log tables and non-programmable calculator is allowed.
5.	For Q.2, Q.3 and Q.4 attempt A and B OR C and D.
Q 1	Do as directed (Any fifteen)
1.	Define enhancer elements.
2.	State the significance of TATA box.
3.	State true or false: Sigma factor is required throughout the transcription
	in prokaryotes
4.	What are splisosomes 2
5.	State function of RNA polymerase II.
6.	What does CPSF stand for?
7.	What are introns?
8.	is an enzyme which adds formyl group to methionine
	during initiation of translation in bacteria.
9.	Give the significance of A-site in translation process.
10.	Ubiquitin tags protein to target it for degradation. (State true or false).
11.	What are sense codons?
12.	The m-RNA ribosome binding site region in bacteria is commonly
	known as the sequence
13.	Each m-RNA codon that specifies an amino acid in a polypeptide chain
3,30	consists ofnucleotides.
14.	During protein sorting, once the signal sequence is fully into the cisternal
11.0 2,02	space of the endoplasmic reticulum, it is removed from the polypeptide
499	by the enzyme
15.	All of the genes involved in functioning of the lac operon are inducible.

53301 Page 1 of 3

Define : Catabolite repression

(State True or False)

16.

Paper / Subject Code: 80605 / Molecular Biology

17.	The <i>cro</i> protein and λ repressor proteins bind to the same sites within OR.	A E
	(True or False)	
18.	Anthranilate synthetase component I is coded by gene.	
19.	is a phenomenon whereby a gene is transcriptionally silent	
	due to its location and not because of the action of a specific repressor.	
20.	Define miRNA.	
Q. 2 A	Explain initiation of transcription in prokaryotes	90
Q. 2 B	What is 5' capping? Explain.	07
Q. 2 C	Explain termination of transcription in eukaryotes.	08
Q. 2 D	Explain Rho independent termination of transcription.	07
Q. 3 A	State the steps involved in elongation phase of translation. Explain <u>any</u>	08
Q. 3 11	two steps in detail.	U
O 2 D		0.5
Q. 3 B	Draw the structure of t-RNA. Explain the role of t-RNA in translation.	07
	OR	
Q. 3 C	Explain the translocation of proteins into endoplasmic reticulum in	08
	eukaryotes with the help of a suitable diagram.	
Q. 3 D	List any four characteristics of genetic code. Explain wobble's hypothesis	07
	with an example.	
Q. 4 A	Elaborate on the molecular model for attenuation of the trp operon.	08
Q. 4 B	Write a note on mutants of lac operon.	07
1000 1000 1000 1000 1000 1000 1000 100	OR	
Q. 4 C	Give an account of positive regulation of lac operon.	90
Q. 4 D	Discuss regulation of transcription initiation by activators and repressors.	07

53301 Page 2 of 3

15

Q. 5 Write Short notes on any three of the following

- a. Gene silencing
- **b.** Genetic switch in lambda phage
- **c.** Degeneracy of Genetic code.
- **d.** Amino-acylation of t-RNA.
- e. RNA editing

53301 Page 3 of 3