CD-30/09/15 BIOTECHNOLOGY-II S.Y.B.Sc. SEM III EXAM MARKS 75 21/2 HRS (80)

- All questions are compulsory.
- Figures to Right indicate marks.
- Draw diagram wherever necessary.

Q.I) A) Explain the following (any four) (08)1. Competitive Inhibition Double Reciprocal Plot 2. Isozymes 6. Suicide Inhibitors 3. Rate-Limiting Step Noncompetitive Inhibition 4. Cofactor Vmax Q.I) B) Answer the following. (any two) (12)1. State Hypothesis of Enzyme substrate Binding. 2. Derive the Michaelis-Menten Equation for enzyme kinetics. 3. Explain the reversible Enzyme Inhibition. 4. Factors affecting Enzyme Substrate Binding. Q.II) A) Draw structure of the following molecules. (any two) (04)1. 2-Phosphoglycerate 3. a ketoglutarate 2. Citrulline 4. Serine Q.II)B) Give the significance of following enzymes with suitable reaction (any two) 1. Arginase 3. Acyl Co-A Synthetases 2. Enoyl Co-A Hydratase 4. PDH complex QII) C)Answer the following. (any two) (12)

- 1. Explain the Splitting and Energy generation phase of glycolysis with suitable reactions.
- 2. Give a brief account on Regulation of TCA.
- 3. Explain the reactions involved in Carnitine Shuttle pathway.
- 4. What is ω oxidation of fatty acids? Explain with suitable reactions.

Q II(A) Give significance of the following in Electron transport chain (any two) (04)

- 1. Cytochrome bc1
- Light harvesting complexes
- 3. B subunit of ATP synthase
- 4. Membrane potential

TECHNOLOGI-II S.T.B.SCISZ.	
DILO	3) State whether the following statements are true or false. (any four) (04)
	Plastoquinone is a functional homologue of cytochrome C.
2.	PS-I absorption maxima is at 700 nm.
	Cyanide is an uncoupler of oxidative phosphorylation.
4.	
5.	
6.	The oxidative phosphorylation takes place in chloroplast.
	FADH ₂ enters from the complex-I of electron transport chain.
8.	1.5 ATPs are formed when FADH ₂ is a first electron donor in oxidative phosphorylation.
Q.II(C) Explain (any two) of the following. (12)
1	Noncyclic chloroplast ETC with schematic representation.
	Significance of oxidative phosphorylation.
3	Mode action of any one uncoupler in mitochondrial ETC.
4	Synthesis and release of ATP by complex V of oxidative phosphorylation .
VI.Q	Write a note on (any Three) of the following (15)
1	. Binding Energy
	Applications of Cellulases
3	Oxidation of Monounsaturated Fatty acids
4	. Deamination.
5	Electron carriers of cyclic photophosphorylation.
6	Role of proton motive force in ATP synthesis.
	Symmesis.
