		$(2\frac{1}{2} \text{ Hours})$	[Total Marks	: 75
N.B. : (1) (2) (3) (4)	All questions carry	nt indicate Full Mar	ks.	
1. (A) Ch	oose the MOST APPI mammalian catabolism?		Any Three): aerobic pathway of glucose	3
	(a) Nerve cell	(b) Sperm cell	(c) Red cell	
(ii)	(a) pyruvate is toxic (b) pyruvate can form	in larger concentration		
(iii)	CO ₂ is not produced it (a) Pyruvate dehydro (b) Succinate dehydro (c) Isocitrate dehydro	ogenase rogenase	ed by the enzyme	
(iv)	Which statement is not (a) Substrate level place (b) NADPH is produce (c) Pentoses are productions.	hosphorylation preser		
(v)	except	·	om the following compounds	
(vi)	(a) Lactate ATP molecule in the citric acid cycle (a) Fifteen	•	(c) Glycerolmplete oxidation of acetyl CoA(c) Twelve	
(B) De	fine and explain (any o (i) Catabolism (ii) Transketolase	ne):		2

2

(C) Wi	rite short notes on (any (i) Multienzyme con (ii) Anapleuratic rea	mplex.		4
(1	D) At		epresent Krebs cycle ogenolysis and Glycos	genesis	6
2. ((i)	(a) CytochromeDuring the dark react(a) Water is split	accepts only one electrical (b) NADH tion of photosynthesis to organic compound	c) FADH	3
	(iii)		from chlorophyll-b ir (b) -COOH group	having a c (c) -CH3 group	
	(iv)	of a reaction? (a) The energy conchemical reaction (b) The difference been energy consume	sumed when chemic n. etween the energy rele d by bond cleavage du	t describes the enthalpy change al bonds are broken during a ased by bond formation and the aring a chemical reaction. as a reaction proceeds.	l
	(v)	Glycerol phosphate a (a) 1	accounts for generation (b) 2	n of ATP.	
	(vi)	inhibits comp (a) Rotenone	•	(c) Carbon monoxide	
(1	B) De	efine and explain (any o (i) Antenna molecul (ii) DNP	, and the second		2

3

	(C) Ar	ıswer	the following (any	one)	•			4
		(i)	Describe the signi	fican	ce of Complex III to	ETC.	•	
		(ii)	Schematically exp	lain c	cyclic photophospho	rylatio	on.	
	(D) Ar	nswer	the following (any	one)	•			6
		(i)		_	-		of the ATP synthase of a proton motive	
		(ii)	Elaborate on C3 c	ycle	with special empha	sis on	the role of rubisco.	
			Explain the stoiche	emet	ry of the C3 cycle			
).					IATE answer (any	three		3
	(1)		exchange chromato		ony is based on	—··		
		` ′	electrostatic attract		nia anacias	7		
			electrical mobility		_			
		(0)	adsorption chroma	uogi	apity			
	(ii)	The	right expression for	r the	appearance of a solu	ite in a	an effluent is (where	
		•			Ÿ.	d volu	me, kD distribution	
			stant and Vi internal			(a)	V/V - IDV	
		(a)	$\mathbf{v}_{e} - \mathbf{v}_{0} - \mathbf{KD} \mathbf{v}_{i}$	(0)	$V_e - V_0 = kDV_i$	(6)	$\mathbf{v}_{e}^{\prime}\mathbf{v}_{0}^{\prime} - \mathbf{KD}\mathbf{v}_{i}^{\prime}$	
	(iii)	dye	on the origin. After	six n	ninutes the solvent h	as mov	a spot of green food yed 12 cm and a blue yent has advanced a	
		furtl	her 4 cm. How man	y cm	from the origin is the	ne blue	e spot likely to be?	
		(a)	15 cms	(b)	18 cms	(c)	12 cms	
	(iv)	***************************************	is the most suita	ble g	as to use as a carrier	gas in	a gas chromatogram.	
		(a)	Helium	(b)	Oxygen	(c)	Carbon dioxide	
	(v)	In c	hromatography, the	mol	oile phase can be	0		
		(a)	Solid or liquid	(b)	Liquid or gas	(c)	Gas only	

4

	(vi)	***************************************	types of chromatography involves the process, where mobile phase	
			es through the stationary phase by the influence of gravity or capillary	
		actio		
			Column Chromatography	
			High Pressure Liquid Chromatography	
		(c)	Planar Chromatography	
(B)	De	fine a	nd explain (any one):	2
		(i)	Gradient elution	
		(ii)	Retention time	
(C)	Wr	ite sh	ort note on (any one):	4
			Column chromatography	•
		` '	Principle and applications of gel permeation chromatography	
(D)	An	swer	the following (any one):	6
		(i)	A mixture of glucose, xylulose and lactose has to be resolved into	
			separate components. Suggest a technique and explain its principle as	
			well as the procedure for the same.	
		(ii)	Components with isoelectric pH as 2.4, 5.9 and 9.8, need to be separated	
			from a plant extract. (a) Give the principle of chromatographic technique	
			suitable for this separation. (b) Discuss the technique in detail starting	
			with the stationary phase, mobile phase and the order of elution.	
(A)	Cla		the MOST ADDODDIATE engage (corrections)	2
(A)			the MOST APPROPRIATE answer (any three): ch one of the following cofactors is correctly matched with the vitamins	3
	(1)		derived from?	
			NADH-vitamin B ₂ (b) TPP-vitamin B ₃ (c) FADH ₂ -Vitamin B ₃	
		(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	(ii)		form of Vitamin A is required for vision?	
		(a)	All cis retinal (b) All trans retinal (c) 11 cis-retinal	
	(iii)	Vita	min E prevents	
			secretion of enzymes	
		(b)	keratinisation of epidermal cells	
		(c)	absorption of harmful enzymes.	

4.

5

	(a) (b)	corbic acid acts as a oxidizing agent reducing agent both reducing and oxidizing agent	
		e equilibrium constant of ionisation reaction of pure water is 1.8 X 10 ⁻¹⁴ M (b) 1.8 X 10 ⁻¹⁶ M (c) 1.8 X 10 ⁻⁷ M	
1	(a) (b)	zwitterionic form, an amino acid will act as a proton donor proton acceptor both proton donor and acceptor	
(B)	(i)	and explain (any one): Titration curve Niacin	2
(C)	(i)	the following (any one): How is the blood calcium level maintained in the body? Emphasize on the role of PTH. Derive the Henderson Hasselbalch equation. Prepare a buffer solution that has a pH of 5.27. If there are 10mmols of acetic acid, how many mmols of sodium-acetate will be needed? (pK _a of acetate buffer is 4.76).	4
(D)	(i)	r the following (any one): Define buffering capacity. With ionisation forms and pKa values, explain the titration curve of a basic amino acid. Discuss in detail the role of transducin in the Wald's Visual cycle.	6
(A)	(i) Sch	ot any one of the following: nematically represent the oxidative phase of HMP. The the significance and characteristics of the glyoxalate cycle.	3

5.

6

(B)	An	swer the following (any one):	3
	(i)	Give the redox potential of: (a) NADH (b) O ₂ (c) Coenzyme Q.	
	(ii)	Compare and contrast: Oxidative and photo-phosphorylation.	
(C)	An	swer the following (any one):	3
	(i)	Give the principle and applications of gas chromatography.	
	(ii)	For chromatography, state the role of: (a) Dextran blue, (b) Silica gel.	
(D)	An	swer the following (any one):	3
	(i)	Mention: (a) deficiency disease, (b) physiological role, (c) chemical form	
		of Vitamin B ₁ .	
	(ii)	Briefly explain the working and principle of a pH meter.	
(E)		te True or False (any three):	3
	(i)	Hexokinase has lower Km than glucokinase.	
	(ii)	PDH complex has lipoic acid as a cofactor.	
	(iii)	Cytochrome c has higher redox potential to that of hydrogen.	
	(iv)	Above the pI, an amino acid is positively charged.	
	(v)	Water soluable vitamin deficiencies generally do not occur.	
	(vi)	The synonym of Glyoxalate cycle is HMP pathway	