		[Time: Three Hours] [Marks:	100]
	N.B.	Please check whether you have got the right question paper. 1. All Questions are compulsory.	
		2. Figures to the right indicate full marks	1975 C
		3. The use of log-table/nonprogrammable calculator is allowed	\$ 0
		4. Answers for the same question as far as possible should be written together	1
Q.1	A	Select the correct option and complete the following sentences: (any twelve)	12
	(i)	The rate of change of free energy with temperature at constant pressure is	
		a) volume b) - ve entropy c) + ve entropy	
	(ii)	Decrease in Gibbs free energy is done.	
		a) maximum work b) net-work c) limited work.	
	(iii)	Van't Hoff reaction isotherm is given as	
		a) $\Delta G = -RT \ln K$ b) $\Delta G = RT \ln K$ c) $\Delta G^{\circ} = -RT \ln K$	
	(iv)	Specific conductance of a solution is the conductance offered byvolume of solution.	
		a) 0.1 dm ³ b) 1cm ³ c) 0.1 cm ³	
	(v)	As the temperature increases, resistance of an electrolytic conductor	
	. •	a) increases b) decreases c) does not get affected.	
	(vi)	At the same temperature, the transport number of an ion will be	
		in solutions of different salts of the ion.	
	2	a) common b) different c) constant	
	vii)	Among the following compounds, is expected to be more	
	27.6	ionic.	
	13 17 17 17 17 17 17 17 17 17 17 17 17 17	a) H ₂ O b) NaCl c) SrCl ₂	
26	viii)	During the formation of a chemical bond, energy of the system	
		a) decreases b) increases c) does not change.	
	ix)	The H — P — H bond angle in PH ₃ is a) 106 ⁰ ′ b) 94 ⁰ c) 84 ⁰	
	x)	The number of lone pairs of electrons in NH ₃ molecule is	
12 O V		(a) one (b) two (c) three	
	xi)	The formal charge on H atom in [PH ₄] ⁺¹ ion is	
	37.7000	a) +1 b) +2 c) 0	
S. A. S.	xii)	The contributing structures of a molecule exhibiting resonance should	
	7772	have number of unpaired electrons	
		a) different b) same c) neither a) nor b)	
3,45,7	xiii)	o- bromo toluene on treatment with sodamide in presence of liq. ammonia	
		gives	
\$ \$\$\tilde{\chi}\$		a) o-amino toluene b) m-amino toluene	
660		c) mixture of o-amino toluene & m-amino toluene	

	xiv)		Chiral alcohol reacts with thionyl chloride to form alkyl chloride					
		is	4	1 \ C 2	. •		266	
			1 reaction	b) S _N 21	reaction	c) S _N i reaction		
	xv)		ols arebakly acidic b		idia alla		37. XX	
		one of them.						
	xvi)		tion of epoxide with kyl cyanide		io formatioi nohydrin	c) alcohol		
	xvii)	,	• •	, •	40170	Y_{\bullet}		
	XVII)		Nitration of phenol with conc.HNO ₃ gives a) o-nitro phenol b) p-nitro phenol c) 2,4,6-nitro phenol					
	xviii)							
	Aviii)	hydrolysis gives						
		•	• •	b) prima	ry alcohol	c) alkoxy alkane		
		,		65000			XXX	
В		State whether the following sentences are True or False (any three)						
	(i)	In ele	ectrolytic conductors	, transfer of	matter does	not take place.		
	(ii)	Cher	nical potential is the	Gibbs free e	nergy of 1	nole component present		
		•	stem.	\$ \$ 5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	(iii)	d orb	oitals are un-gerade	in nature.				
	iv)		molecule has two lo	V MY CAV LY CALL				
	(v)	Ethyl alcohol has lower boiling point than Dimethyl ether.						
	vi)	p-nit	rophenol is more acid	dic than pher	nol.			
C								
C		Match the following – (any five)				, T	05	
			Column A		Column I		-	
	ST	1)	Fugacity	a)	Bent 'T' s			
	SE SE SE	2)	Electronic conducto	ors b)		hium compound		
		3)	BrF ₃	c)	~ _	agnesium compound		
		4)	CH ₄	(d)	1	rried by electrons		
200		(5)	Grignard reagent	e)		by less polar solvent		
		6)	S _N 2 reaction	f)	escaping t	<u> </u>		
				g)	planar tria			
32		300		h)	tetrahedra			
33				i)		by weak nucleophile		
	7330			j)	S_N1 mech	nanism		
× C		3000						
20		Attempt any four from the following—						
A	2000	Derive Gibbs-Duhem equation. 05						
В	50.50	Explain the variation of chemical potential with pressure and temperature. 05						
C		Explain - whether the following process-						
	5 6 6 C	$CCl_4(liquid) + H_2(gas) \rightarrow HCl(gas) + CHCl_3(liquid)$						
		is spontaneous or non-spontaneous at 298 K under standard state of						
		conditions. (Given - At 298K, $\Delta H^o = -91$ kJ and $\Delta S^o = 41.5$ JK ⁻¹ for thi						
9,0	120 2V 2V	react	10H.)					

54247 Page 2 of 4

Q.2

Paper / Subject Code: 79508 / Chemistry - Paper -I

	D	i)	State Kolhrausch's law of independent migration of ion.	05
		ii)	The values of molar conductance at infinite dilution for sodium acetate,	\$ 4
			hydrochloric acid and sodium chloride are 0.00910, 0.04261 and 0.01264 S	200
			m ² mol ⁻¹ respectively. Calculate the molar conductance of acetic acid at	\$2.5
			infinite dilution.	
	Е		Define the terms – i) conductance, ii) specific conductance, iii) cell constant,	05
			iv) molar conductance and v) transport number.	
	F		Describe the factors affecting the transport number.	05
0.2			Attempt one form from the fellowing	300
Q.3	٨		Attempt any four from the following—	
	A		Define following terms: a) heat of solution b) heat of hydration c) lattice energy.	03
			ii) How are these related to each other? How do they help in understanding	02
			the solubilities of ionic compounds?	
	В		Give an account of the following:	05
			i) Born Lande's equation ii) Structure of CsCl	
	C		What are the important postulates of 'Valence Bond Theory'?	05
	D		Predict the geometry and give an example for each one of the following	05
			molecules.	
			i) AB ₂ molecule with 1 lone pair of electrons.	
			ii) AB ₄ molecule with 2 lone pairs of electrons.	
			iii) sp ³ d ² and sp ³ d hybrid orbitals	
	E		Draw a neat, labeled MO diagram for F2 molecule. Calculate its bond	05
			order and mention its molecular configuration and magnetic property.	
	F		Explain why mixing of orbitals takes place in case of B ₂ and C ₂ molecules.	05
		S	Give an account of the magnetic properties of B ₂ and C ₂ molecules on the	
		E VE E	basis of MOT.	
		76. E		
Q.4	3		Attempt any four from the following—	
	A	(i)	Give preparation of phenol from-	03
			a) cumene b) chlorobenzene	
	200	ii)	Explain the effect of electron donating substituent on acidic character of	02
330	68		phenol giving one example.	
	\mathbf{B}		What is cine substitution? Explain with mechanism.	05
	C	(i)	What is the action of K ₂ Cr ₂ O ₇ / conc. H ₂ SO ₄ on	03
			a) Isopropyl alcohol b) n- Butyl alcohol c)t- butyl alcohol	
		(ii)	Give preparation of ethylene oxide from	02
	20		a) ethene b) ethylene chlorohydrin	
	\mathbf{D}_{∇}	(i)	Give preparation of phenyl magnesium bromide and what happens when	03
	50 Z	3,49	phenyl magnesium bromide reacts with	
		5,74	a) H ₂ O b) dry ice	
		(ii)	What is sulphation of alcohol? Give one example.	02
	E		What happens when-	05
			a) cyclohexyl magnesium chloride reacts with ammonia.	
			b) sodium phenoxide is heated with ethyl bromide in ethanol.	

54247 Page 3 of 4

Paper / Subject Code: 79508 / Chemistry - Paper -I

			c) ethylene oxide is heated with excess of water in presence of H ₂ SO ₄						
			d) phenol is treated with bromine water.	0 () 0 ()					
			e) 2-propanol is heated with $60\% \text{ H}_2\text{SO}_4$ at 170°C						
	172	<i>(</i> :)	f) ethyl lithium reacts with ethanol.						
	F	(i)	What happens when ethylene oxide reacts with	03					
		(**)	a) HBr b) NH ₃ c) C ₂ H ₅ OH/dil.H ₂ SO ₄						
		(ii)	What is etherification of alcohol? Give one example.	02					
Q.5			Attempt any four from the following—						
	A		Derive Gibbs-Helmholtz equation	05					
	В		The value of molar conductance at infinite dilution of Al ₂ (SO ₄) ₃ is 858	05					
			S cm ² /mol while that of SO ₄ ²⁻ ions is 160 S cm ² /mol. Calculate the molar						
	conductance of Al ³⁺ ion at infinite dilution.								
	C		Explain the following						
			i) Equivalent and non-equivalent hybrid orbitals	03					
			ii) Equatorial P—Cl bonds are shorter than the axial P—Cl bonds	02					
			in PCl ₅ molecule.						
	D		Answer the following with reference to MOT	05					
			i) definition of molecular orbitals						
			ii) conditions for the formation of molecular orbitals in di atomic						
			molecules						
			iii) formation of molecular orbitals with the help of diagrams.						
	E		Explain the mechanism of alkaline hydrolysis of methyl bromide giving	05					
			energy profile diagram.						
	F		What happens when methyl lithium reacts with	05					
		i) 🔎	C ₂ H ₅ Br						
		ii)	CH ₃ CHO/H ₃ O ⁺						
		iîi)	CO ₂ /H ₃ O ⁺						
	3	iv)	CH ₃ COCH ₃ /H ₃ O ⁺						
	\$ C	v)	H ₂ C CH ₂						
	300	\$ 500) H ₂ O						

54247 Page 4 of 4