3 hrs

(100 Marks)

NB:	All questions are compulsory Figures to right indicate full marks Use of log table or non-programmable calculator is allowed Answers of the same question as far as possible write together
Q 1. A. Fi	ill in the blanks with suitable option and rewrite the statement. (12)
i.	Thin layer chromatography is a type of chromatography.
	a. adsorption b.partition c.ion-exchange
ii.	is a separation method
	a. Ion exchange b. Conductometry c. pH metry
iii.	Partition coefficient & distribution ratio will be
	a. always equal b. always different
	c. will be equal only if the molecular condition of the solute is the same
iv.	The method of separation of two immiscible liquids that differ in density is
	a. solvent extraction b. centrifugation c. distillation
٧.	In potentiometric titrations an electrode whose potential changes during the
	course of titration is calledelectrode.
	a. reference b. saturated calomel c. indicator
vi.	A salt bridge is used in potentiometric measurements for connecting two
	a. beakers containing electrolytes b. half cells c. indicator electrodes
vii.	A conductivity cell contains electrode
	a. silver b. nickel c. platinized platinum
viii.	The unit of cell constant is
180	a. S b. S cm ⁻¹ c. cm ⁻¹
ix	The Gaussian curve is symmetrical around
	\mathbf{a} . $\mathbf{\mu}$ \mathbf{b} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}
	The F-test is used for
	a. testing of significance b. rejection of data c. obtaining the best fitting line
XI.	The range will cover 68.3% of the total population in Gaussian
	distribution curve.
	a. $\mu \pm 2\sigma$ b. $\mu \pm \sigma$ c. $\mu \pm 3\sigma$
XII.	Confidence limit is defined as
	a. ts/\sqrt{n} b. ts/n c. $\sqrt{ts/n}$
B. S	tate whether the following statements are true or false (3)
1, 12, 12, 02, 02	Ref value is independent of solvent system.
5. W. W. W. K.	Coloured solutions can be titrated potentiometrically.
1, 01, 70, (J), U),	o obtain the normal error curve, small number of measurements are satisfactory.
	2 22 a.m. 2.10 man and a danta, aman mambar of modern officer and additiony.
EARCO	

C.	Mat	ch the following:		(5)
		Α	BSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	
	1.	Separation of metal ions	a. Separation of proteins	
	2.	Electrophoresis	b. Testing of significance	
	3.	Platinum electrode	c. Reference Electrode	
	4.	Saturated Calomel Electrode	d. Paper Chromatography	
	5	. Null hypothesis	e. Conductivity cell	300
			f. Separation of uncharged species	
Q 2. A.	(i) E	xplain the term retardation factor.	Give the significance for the qualitative	(5)
	ar	nalysis carried out in thin layer chro	omatography.	
	(ii) C	Give an account of physical metho	ds of separation.	(3)
Α.	(i) Co	mpare and contrast Thin Layer (T	LC) and Paper Chromatography?	
				(5)
((ii) W	hat is the difference between parti	tion coefficient and distribution ratio?	(3)
В. (tin fa	nes with 20 cm ³ portions of an org	taining 1.2 g of solute is extracted three anic solvent. The distribution ratio in late the amount of solute remaining action.	(5)
(ii) W	/hat is R_f value? How is it useful f	or separation?	(3)
`	.9			()
B. (9		istribution ratio D which would allow cm ³ of an aqueous solution with four r?	(5)
		2 0 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ographic methods on the basis of the	(3)
	st	ationery and mobile phase.	×	. ,
C. (5'. Rh' nh	nat are the different types of detection it in detail.	tors used in HPLC? Discuss any one	(4)
			OR	
	(ii) V	/hat are the factors that affect the	extraction in solvent extraction process?	(4)
Q 3. A.	7 - 12 - 12	hat is indicator electrode? Which a dicator electrodes in acid base titra	are the electrodes that can be used as ations?	(5)
N. V.	(ii) V	hat are the advantages of conduction OI		(3)
A	Viay w	00000	ctometric measurements. Explain the	(5)

54068 Page **2** of **4**

Paper / Subject Code: 78868 / Chemistry: Paper III

(11) V\	/hat are	the ap	plicatio	ns of p	otentic	metric	titrati	ions?		(3)
B. (i	,	Explain the nature of the curve for the titration of (i) strong acid against (5) strong base and (ii) weak acid against weak base conductometrically.								(5)	
(ii) V\									(3)	
B. (i)		What is a quinhydrone electrode? Derive an expression between E _{cell} and pH using quinhydrone in acidic medium.							(5)		
(ii) W	ith the	help of	a diagr	am dis	cuss th	ne cons	structi	ion of o	combined pH electro	1, 12 Oc
C. (i) E	Explain the principle of potentiometric titrations. OR								(3) (4)	
(ii	•	iscuss t nalysis.	the app	lication	s of pH	metry	in bio	logica	and o	environmental	(4)
Q 4. A. (i) Tł	ne pH o	f a solu	tion wa	s deter	mined	with fo	ollowi	ng res	ults	(5)
·		Trial	1	2	3			5	6		
	•	рН	4.50	4.53	4.55	4.	51 4	.57	4.52		
(i		alculate xplain 2	00	20,0	0.8.8	39 X X	e rejec	S ON TO	of doub	tful data.	(3)
(i	i) (1) Fo	Calculat 9.60. 1	e the m 9.49, 19 ata in th	ean ar 9.63, 19 ne follo	nd medi 9.58, 19 wing tal	curve? an for 9.59 ole, de	Descr the fol	lowing	g sets	eatures of this curve' of values: f the type y = mx + c	(3)
S	30,0	X	1	2	3	40	5.0	6	7		
		20 X	2.5	3.1	3.6	4.2	4.5	5.0	5.6	3	
		xplain I	Null hyp	oothesi	3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	OF	8			_	(3)
X 29. X 39	i) Ir re F	the an	alysis on the control of the control	of sulph 7, 0.47	nur cont 7, 0.48,	d to detent of 0.50	escribe a sam	ple, th	ne follo	of a measurement. owing values were sis of the Q-test.	(5) (3)
	A large number of measurements for the estimation of traces of titanium in several samples from the same source, gave a standard deviation of 0.1 ppm of titanium. If a single measurement of a particular sample gave 7.85 ppm titanium. Calculate the true mean with 95% confidence limit. (Z for 95% confidence limit = ± 1.96)										
54068					Pa	age 3 c	of 4				

019C45E844B25A946B38295622434800

OR

C. Define: a) The true value of a measurement b) Median

(4)

c) Number of degree of freedom

Q 5. Answer any four of the following.

(20)

- A. A 150 cm³ of aqueous solution containing 0.2 g of iodine is equilibrated with 100 cm³ of carbon tetrachloride. The distribution coefficient between carbon tetrachloride and water at room temperature is 75 in favour of carbon tetrachloride. Calculate the weight of iodine remaining un-extracted in the aqueous layer after
 - (i) two extractions with 50 cm³ of CCl₄
 - (ii) four extractions with 25 cm³ of CCl₄.
- B. Discuss the applications of thin layer chromatography?
- C. Discuss advantages and limitation of potentiometric titrations.
- D. Explain the various graphical methods used to determine the equivalence point in potentiometric titrations.
- E. Describe the method of least square for obtaining the best fitting line.
- F. For the data in the following table, derive an equation of the type y = mx by using the method of averages:

x 0 1	200	3	4	5900
y 0.0 2.2	4.5	7.1	9.6	11.6

54068