Please check whether you have got the right question paper.

[Total Marks: 100]

[Time: 3 Hours]

N.J	B.: 1. All	I Questions are compulsory.
	2. Fig	gures to the right indicate full marks.
	3. Us	e of log-table/nonprogrammable calculator is allowed.
	4. An	swers for the same question as far as possible should be written together.
1. (A)	Select t	the correct option and complete the following sentences. (any twelve) 12
	(i)	is an example of parallel reaction.
		(a) Nitration of phenol (b) Oxidation of benzyl alcohol
		(c) Reduction of benzaldehyde
	(ii)	The units of energy of activation are
		(a) $kJmol^{-1}$ (b) kJK^{-1} (c) $kJK^{-1}mol^{-1}$
	(iii)	A consecutive reaction is represented as
		(a) $A \rightarrow B \rightarrow C$ (b) $A \rightleftarrows B + C$ (c) $A \rightleftarrows B \rightleftarrows C$
	(iv)	extraction process is more efficient.
		(a) Single (b) Double (c) Multiple
	(v)	The completely miscible solution can be separated by
	C C C C C C C C C C C C C C C C C C C	(a) Separating funnel (b) evaporation (c) fractional distillation
	(vi)	shows negative deviation from Raoult's law.
<u> </u>		(a) CHCl ₃ and acetone (b) C_6H_6 and C_2H_5OH (c) $C_6H_5CH_3$ and C_6H_6
200F	(vii)	A mixture of ammonia and air at about 800°C in the presence of Pt gauze
		forms
		(a) N_2O (b) NO (c) NH_2OH
	(viii)	compound is related to Haber's process.
		(a) CO ₂ (b) NH ₃ (c) NO ₂
	(ix)	is the most explosive.
		(a) NCl ₃ (b) PCl ₃ (c) AsCl ₃
	(x)	does not exist in free form.
		(a) BF ₃ (b) BCl ₃ (c) BH ₃
		Page 1 of 4

Paper / Subject Code: 79523 / Chemistry - Paper -II

	(xi)	An aqueous solution of borax is	
		(a) neutral (b) acidic (c) basic	X
	(xii)	is not a borane.	
		(a) B_2H_6 (b) B_3H_6 (c) B_4H_{10}	
	(xiii)	can be obtained from aliphatic primary amine and ketone.	
		(a) Enamine (b) Iminium salt (c) Imine	200
	(xiv)	Gattermann-Koch formylation uses a mixture of	7
		(a) DME and POCl ₃ (b) CO and HCl (c) CO and POCl ₃	
	(xv)	is formed during the synthesis of 2-pentanone from ethyl	
		acetoacetate.	
		(a) CH ₃ COOH (b) CO ₂ (c) CH ₃ CHO	
	(xvi)	Alkyl groups make the carbon in the carbonyl group	
		(a) less nucleophilic (b) less electrophilic (c) more electrophilic	
	(xvii)	Cynohydrin contains groups.	
		(a) $-NO_2$ and $-CN$ (b) $-OH$ and $-CN$ (c) $-NH_2$ and $-CN$	
	(xviii)	may be obtained by treating one mole of Grignard reagent with	
		ethyl formate.	
		(a) Ketone (b) Aldehyde (c) Primary alcohol	
	20.00		
(B)	State w	whether the following statements are true or false. (any three)	3
Ŕ	(i)	Chlorination of toluene is an example of reversible reaction.	
CO Z	(ii)	A homogeneous mixture consists of a single phase.	
	(iii)	There are two bridging hydrogen atoms in diborane.	
	(iv)	NO ₂ is released by heating Pb(NO ₃) ₂ .	
XX (2)	(v)	The hybridization of 'C' and 'O' in carbonyl group is sp-sp ² .	
	(vi)	Aldehydes are typically more reactive than ketones.	
		MAY SO M. C. D. M. A. C.	

(C)	Match the column. (any five)							
	(i)	Benzene + Toluene	(a)	Group 13 element				
	(ii)	Chain carriers	(b)	Group 14 element				
	(iii)	Silicon	(c)	Group 15 element				
	(iv)	Bismuth	(d)	Ideal solution				
	(v)	Claisen-Schmidt reaction	(e)	Non – ideal soution				
	(vi)	Knoevenagel condensation	(f)	Atoms and free radicals	(2, 10, 10)			
			(g)	Aromatic aldehyde having α - H atom				
		A STATE OF THE STA	(h)	Active methylene compound				
			(i)	Base catalysed aldol type reaction				
		\$ \forall \text{2} \forall \text{2} \forall \forall \text{2} \forall \						
Atte	mpt an	y four of the following.			20			
(A)	Expla	ain with suitable examples, wha	t is mea	ant by consecutive reactions and				
	parall	lel reactions.						
(B)	Give	an expression for the rate const	ant of a	bimolecular reaction in terms of the				
	activa	ated complex theory.						
(C)	If the	rate of reaction approximately	doubles	when temperature rises from 35°C to				
	45° C, calculate the energy of activation of the reaction. [R = 8.314 JK ⁻¹ mol ⁻¹]							
(D)	State and explain Nernst distribution law. What are the conditions under which the							
	27	s strictly valid?	0.22 0.22 0.22					
(E)	5.6.70	(9, 7, 8, 40° - 7, 7, 8° - 8, 75° - 6, 5, 70° -	3 75 75 0	r pressure – composition curve and				
		in positive and negative deviation	12 0°					
(F)	0, 4.70, 6		Dr.	nperature of 88.6 °C at pressure of				
3,23	ater at this temperature is 8.688 X 10 ⁴							
	NIII -	. Find the composition of the dis	simate.					
Atte	mpt an	y four of the following.			20			
(A)	Whic	h is considered as strong Lewis	acid, B	F ₃ or BCl ₃ ? Explain				
(B)	Draw	the structure of tetraborane. Ex	plain v	arious bonds involved in the structure.				
6 76 E	12 18 C	ulate total number of electrons in	_					
(C)	(\$\infty\x\X\x\X\x\X\X\X\X\X\X\X\X\X\X\X\X\X\X\							
(D)	With a diagram, explain Czochralski pulling technique for purification of silicon.							
6,40	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							

2.

Paper / Subject Code: 79523 / Chemistry - Paper -II

- (E) Name, formulate the hydrides of nitrogen family. Explain trend for their thermal stability.
- (F) Write a note on Bosch-Haber process.

			30'0	
1.	Atte	mpt any four of the following.	K (2)	
	(A)	(A) Explain the mechanism of Benzoin condensation.		
	(B)	i) How will you obtain C ₆ H ₅ COCH ₃ , C ₆ H ₅ COC ₆ H ₅ and C ₆ H ₅ COCH ₂ C ₆ H ₅ from	100	
		benzene using Friedel Craft acylation?		
		ii) Discuss the reduction of 3-pentanone by using NaBH ₄ .	2	
	(C)	i) Give the Mechanism of base catalyzed enolisation.	3	
		ii) How is secondary alcohol obtained from Grignard reagent.	2	
	(D)	i) Explain the general mechanism of acid catalyzed nucleophilic addition to	3	
		carbonyl compound.		
		ii) Explain the preparation of cyclic acetal from ethanal.	2	
	(E)	Give preparation of:	5	
		i) 2-pentanone from acetyl acetone		
		ii) succinic acid from ethyl acetoacetate.		
	(F)	i) How are aldehyde and ketone obtained by hydration of alkyne?	3	
		ii) What are stabilized enols?	2	
5. Att		mpt any four of the following.		
	(A)	Compare the collision theory with the activated complex theory highlighting the	5	
		relative merits of each theory.		
	(B)	What are partial miscible liquids? Explain the term "lower critical solution	5	
		temperature".		
× × × × × × × × × × × × × × × × × × ×	(C)	What is borax? Explain any two methods used for its synthesis.	5	
	(D)	What is silica? Explain its structure and bonding. Why is it inert?	5	
	(E)	Explain the mechanism of Cannizzaro reaction.	5	
A.	(F)	i) Write note on Rosenmund reduction.	3	
18	S. E. S.	ii) Discuss the reduction of 2-butanone by using LiAlH ₄ .	2	

Page **4** of **4**