Paper / Subject Code: 77208 / Chemistry: Paper I [3 Hours] Please check whether you have got the right question paper. 1. All questions are compulsory. N.B: Q.P. Code: 51462 [Marks: 100] | | | Answers to the sub-questions must be written together. Figures to the right indicate marks. | 15.00 | |------|---|--|----------| | | | 4. The use of log table/non programmable calculator is allowed. | 200 | | | (A) (I | | 392 | | l. | | ne correct option and complete the following sentences: | Z | | | | gas will show heating effect | | | | • | at inversion temperature | | | | • | below inversion temperature | | | | ŕ | above inversion temperature | | | | | en a real gas is allowed to expand adiabatically then its temperature | | | | , | decreases | | | | | increases | | | | , | remain constant | | | | | ording to Le-chatlier principle, the ideal condition for the reaction $O_{2(g)} + O_{2(g)} = 2SO_{3(g)}$, $\Delta H = -ve$, is | | | | | $O_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}, \Delta H = -VC, \text{ is}$
high pressure & low temperature | | | | | high pressure & high temperature | | | | | low pressure & high temperature | | | | | dissolving KCl in water there is | | | | | increase in free energy | | | | [0 | decrease in entropy | | | | 25" Q | increase in entropy | | | | | the precipitation of sulphides of Ni ²⁺ , Co ²⁺ , Zn ²⁺ group reagents are | | | | used | | | | | (a) | NH ₄ Cl+ NH ₄ OH + H ₂ S | | | 000 |) (b) | NH ₄ Cl+ H ₂ S | | | | (c) | NH ₄ OH+H ₂ S | | | XX Z | | chemical test heating solid substances alone or with other substances then the sare called | | | | a) | wet test | | | 300 | (b) | dry test | | | 30 | c) | charcoal cavity test | | | 37 | vii) Aci | dic & basic character in non-aqueous solvent is not explained by | | | 6 | (a) | Arrhenius concept | | | 100 | (b) | Lowry-Bronsted concept | | | 3 | 5 () () () () () () () () () (| Lewis-concept | | Q.P. Code: 51462 | | viii) among the following | is Lewis base. | 200 | |------|--|--|-------| | | a) AlCl ₃ | | | | | b) NH_3 | | | | | c) BF ₃ | | X Z | | | ix) Coupling of alkylhalide with | metal in dry ether to form | | | | corresponding hydrocation is call | | | | | a) Mg | | 3,55 | | | b) Na | | 36.50 | | | c) Li | | ,6 | | | x) If two atoms or groups are elimination. | nated from adjacent carbon atoms then it is called | | | | a) α | | | | | b) β | | | | | c) γ | | | | | considered as | breaks simultaneously then such mechanism is | | | | a) E ₁ | | | | | b) E ₂ | | | | | c) E ₁ cB | | | | | xii) The product of Hofmann eliminat | ion reaction is olefin. | | | | a) least alkylated | | | | | b) most alkylated | | | | | c) least hydrogenated. | | | | 1. | (B) State whether the following stateme | nts are True or False : | 03 | | | i) Non ideal gases behave ideally at | high pressure & low temperature. | | | | ii) Lux-flood concept explains acid-l | base behaviour in terms of 'Oxide ion". | | | | iii) Wilkinson catalyst is the comsodium (I) | mon name for chloro tris (triphenylphosphine) | | | 1. | (C) Match the following columns: | | 05 | | | Column P | Column Q | | | 45 | i) Average velocity | m) Pop sound | | | | ii) Active mass of solid | n) $(8RT/\pi m)^{1/2}$ | | | 90 | iii) C1O ₄ | o) Benzylic Bromination | | | 30 | iv) H ₂ gas
v) NBS | p) Catalyst | | | | v) NBS | q) Bronsted baser) propyl bromide | | | 2000 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | s) unity | | | 2. | COLOR TO TO THE CAP AND CA | lification of the ideal gas equation PV = nRT by | 05 | | | replacing the pressure with correct | - | 02 | | 33 | ii) Distinguish between real and idea | - | 03 | | 875 | 2017/4016/06/06/06/06 | OR | | ## Paper / Subject Code: 77208 / Chemistry: Paper I Q.P. Code: 51462 | 2. | (A) | i) | Explain compressibility factor. Calculate the volume occupied by 8 moles of a gas at 1.013×10^7 N/m ² pressure and 275K, if its compressibility factor is 0.783 (R = 8.314 Nmk ⁻¹ mol ⁻¹) | 05 | |------|---|------------|--|----| | | | ii) | State and explain Charles law. | 03 | | 2. | (B) | | What are reversible and irreversible reactions? Explain with suitable examples. | 05 | | | ` / | | Equillibrium constant for the reaction $A \rightleftharpoons B$ at 298K is 2×10^2 . Calculate the standard free energy change for the reaction. (R = 8·314 J/k/mol) OR | 03 | | 2. | (B) | i) | Define entropy. Give the physical significance of entropy. | 05 | | | | ii) | The equilibrium constant of a reaction is 2×10^{-3} at 25°C and 2×10^{-2} at 50°C. What is the nature of the reaction, exothermic or endothermic? Give reasons. | 03 | | 2. | (C) | Sta | te any four assumptions of kinetic theory of gases. | 04 | | _ | (~) | ~ | | | | 2. | (C) | Sta | te any four characteristics of equilibrium constant of a reaction. | 04 | | 3. | (A) | i) | Explain the solubility product principle used in qualitative analysis with example. | 05 | | | | ii) | Calculate the solubility of silver chromate if concentration of silver ion is $2.6 \times 10^{-4} \text{ mol/dm}^3$ & chromate ion is $1.3 \times 10^{-4} \text{ mol/dm}^3$. | 03 | | 3. | (A) | i) | What are the apparatus used to detect the gases in qualitative analysis. | 05 | | | ` , | | Give the classification of gases. | 03 | | 3. | (B) | i) | Explain Pearson's Principle of acids and bases. Comment on stability of complex [AgI ₂] ⁻ and occurrence of mineral of MgCO ₃ and CaCO ₃ . | 05 | | | | ii) | Give limitations of Arrhenius acid-base concept. | 03 | | _ | | | | | | 3. | (B) | | What is Lewis concept of acids and bases? Give its advantages. | 05 | | | | ii) | Define equivalence point. Calculate the pH of solution. | 03 | | | | (2) (5) | When 7.0 cm^3 of 0.1M KOH is added to 10.0 cm^3 of 0.1M HCl. | | | 3. | (C) | Wr | te a brief note on hydrogen sulphide gas. | 04 | | | 000 | 305 | OR | | | 3. | \$\ightarrow 2\cdot \cdot | | | 04 | | 4. | (A) | i) | How is sodium acetylide prepared? How is it converted into following:
a) Ethene b) propyne c) Butyne | 04 | | 2000 | | ii) | Explain oxidation of 2-Butene with OsO ₄ with chemical equation. Why it is called a syn-addition? Explain its stereospecificity. OR | 04 | | 4. | (A) | i) | Explain Diels Alder Reaction with one example. Name diene and dienophile. Give its mechanism. | 04 | | | | ii) | What are different types of catalysis? Explain with examples. Explain why catalytic hydrogenation of olefin is predominantly cis-addition. | 04 | Q.P. Code: 51462 | 4. | (B) i) Explain Allylic and Benzylic bromination with suitable examples. | | | | | |----|--|------|--|--|--| | | ii) State and explain Markownikoff's and Anti Markownikoff's rules with examples. | 04 | | | | | | OR STATES | b 60 | | | | | 4. | (B) i) What is ozonolysis? Give the products of ozonolysis of ethene and 2-Methyl-2-Butene. | 04 | | | | | | ii) Write a note on E ₁ mechanism with rate and order of reaction. | 04 | | | | | 4. | (C) State and explain with suitable examplesi) Saytzeff ruleii) Hoffmann Rule | 04 | | | | | | OR PROPERTY OF THE | | | | | | 4. | (C) Define vicinal dihalide. How is it converted into following alkynes: | 04 | | | | | | i) Acetylene | | | | | | | ii) Propyne | | | | | | | iii) Butyne | | | | | | 5. | Answer any four of the following: | | | | | | | A) Explain the causes of deviation of gases from the ideal behaviour. | 05 | | | | | | B) For the reaction $CO_{(g)}+2H_{2(g)}\rightleftharpoons CH_3OH_{(g)}$. Calculate the value of K_c & Kp at 300°C. The equilibrium concentration of $H_{2(g)}$, $CO_{(g)}$ & $CH_3OH_{(g)}$ are 0.09 mole dm ⁻³ , 0.03 mol dm ⁻³ , 0.03 mol dm ⁻³ respectively. | | | | | | | C) Explain the effect of complexation in separation of ions. (Any two examples). | 05 | | | | | | D) Differentiate between Bronsted & Lewis concept of acids & bases with suitable example. | 05 | | | | | | E) Explain oxymercuration & demercuration reaction and give its mechanism and one application. | | | | | | | F) What are the different products obtained when 1, 3 butadiene is treated with Br ₂ & HCl. | 05 | | | |