[Time: 3 Hours] Please check whether you have got the right question paper. [Marks:100] | N.B: | 1. All questic | ons are compulsor | y. 88 | | |----------------------------|---|------------------------------|----------------------|---------------------------| | | 2. Figures to | the right indicate | full marks. | | | | 3. Use of logt | table / non-progra | mmable calculator | is allowed. | | | 4. Answers fo | or the same quest | ion must be written | together. | | | | _ | | | | Q.1 A) Select the cor | rect option and | complete the fol | lowing. (Attempt | Any twelve) | | i) During 6 | endothermic prod | cess, work done, | w is | | | a) nega | ative | b) positive | c) zero | | | ii) The Kii | rchhoff's equatio | on is | | | | a) (Δ <i>H</i> | $(I_2 - \Delta H_1) = \Delta C_p$ | (T_2-T_1) | | | | b) (Δ <i>H</i> | $I_1 - \Delta H_2) = \Delta C_p$ | (T_2-T_1) | | | | c) (Δ <i>H</i> | $(I_2 - \Delta H_1) = \Delta C_p$ | (T_1-T_2) | | | | iii) Molar | heat capacity is _ | | | | | a) exte | nsive property | b) intensive | property | c) neither 'a' or 'b' | | iv) | is not a state | function. | | | | a) cond | centration | b) internal of | energy | c) enthalpy | | v) The nur | nber of moles pr | esent in 18g of w | ater is | 5 4 4 6 8 . | | a) one | | b) 18 | | c) 1.8 | | vi) Equiva | lent weight of K | MnO ₄ acting as a | n oxidant in acidic | medium is | | a) half | of its molecular | mass | b) one fit | fth of its molecular mass | | c) sam | e as its molecula | r mass | | | | vii) Accor | ding to Quantum | theory E = | | | | a) hc | 2,20,10,000 b |) hv | c) n/2⊼ | | | viii) For a | n electron if m_i | = +1, 0, -1 then el | ectron is present in | · | | a) s | 000000000000000000000000000000000000000 | b) p | c) d | | | ix) The fin | e spectra of hyd | rogen atom are ex | xplained by | theory. | | a) Rutl | herford | b) Bohr | c) Dalton | | | x) The ele | ments after urani | ium are called | elements. | | | a) Tran | nsuranic | b) Transplu | tonic | c) uranic | | xi) The ge | neral electronic | configuration of a | in inert elements is | | | a) ns ² , | np^4 | b) ns ² | , np ⁵ | c) ns^2 , np^6 | | | | | lating shielding cor | nstants. | | a) Mul | liken | b) Slater | c) Pauling | <u> </u> | | xiii) Prefix | — ё— н s | formann in HIDAC | nomenclature is _ | | | 3. U. T. O'V. B. VO'L O. V | | b) formal | _ nomenciature is _ | , | | | hyde | | c) carbal | denyde | | | | n dimethyle ether | | | | | | b) sp ² | c) sp | | | | ophiles are | = |) -1 1 C' ' · | | | | tron rich | b |) electron deficient | | | c) elec | tron accepting | | | | | | 57.93 | | | | ## Paper / Subject Code: 81108 / Chemistry: Paper I | |) The bond angle of c | theon in memanor | 15 | ~ | 2016 | |----------------------------|--|--|--------------------------------|--|---| | | a) 120° | b) 180° | | c) 109°28′ | | | | i) The percentage of s | | | VP. 02√ V Λ Δ4 V() 02/= | ecies. | | | , . | $p) sp^2$ | c) sp ³ | | | | | ii) Eelctromeric effec | | _ effect. | | | | | a) permanent | b) temporary | 200 | c) constant | | | B) State w | hether the following | g statements are [| Γrue or Fa | lse. (Attempt any th | ree) | | i) | Work is a function an | nd dw is exact diff | erential. | | | | | • | | | olute per kg of solven | | | | The shell with n=3 is | _ ^ \ | _ Y | 0,9,7,0,4,0,4,9,4, | | | iv) | According to Pauling | g the electronegative | vity differe | nce between two aton | ns is 0.088δ . | | v) | indicates induc | tive effect. | | | CO. 2. D. X. V. | | vi) | IUPAC name of CH ₃ | COO C ₂ H ₅ is ethy | l methanoa | ite. | | | | | | 77568 | | | | C) Match | the following. (Atter | mpt any five) | | | | | | Column | A A C C C C | | Column B | £ . | | | 1) Path function | m - CONCO | a) Visib | le | Y | | | 2) Normality | | b) 5 th pe | riod and VII group | | | | 3) Balmer | | c) Work | done by the system | | | | 4) Position of | Pt Signal Signal | d) Polar | izability effect | | | | 5) Electromeri | c effect | e) Gram | equivalent / L | | | | 6) Sp hybridiz | ation | f) 120° | 5 V V V V V V V V V V V V V V V V V V V | | | | | 726600 | g) 6 th pe | riod & VIII B group | | | | (C) (A) (A) (A) (A) (C) (C) | E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | h) 180° | 1200 | | | | CONTROL DE LA CO | | | | | | Attemr | t any four of the foll | owing. | | 7 | | | | State first law of ther | modynamics in an | y three for | m. Give any two limi | tations of it. | | × Z. | | | | | | | A. | Define thermodynam | nic term system an | d surround | ing. Explain different | types of | | A.
B. | | nic term system an | d surround | ing. Explain different | types of | | A.
B. | Define thermodynam system. | | 908 | ing. Explain different
ulate the work done, v | | | A.
B.
C. | Define thermodynam system. Define the thermodynamic defined def | namic term 'bound | lary'. Calc | | when 1.5 moles | | A.
B.
C. | Define thermodynam system. Define the thermodynamic the thermodynamic define the thermodynamic defined the thermodynamic defined the thermodynamic defined the thermodynamic defined the | namic term 'bound | lary'. Calc | ulate the work done, v | when 1.5 moles | | A.
B.
C. | Define thermodynam
system.
Define the thermody
of an ideal gas are ex | namic term 'boung
panded isotherma | lary'. Calc | ulate the work done, v | when 1.5 moles | | A.
B.
C. | Define thermodynam
system.
Define the thermody
of an ideal gas are ex
volume | namic term 'bound
cpanded isotherma
-1 mol ⁻¹). | dary'. Calcully and revo | ulate the work done, v | when 1.5 moles ce the original | | A.
B.
C. | Define thermodynam
system.
Define the thermody
of an ideal gas are ex
volume
(Given: R = 8.314JK | namic term 'bound
cpanded isotherma
⁻¹ mol ⁻¹).
Enthalpy | dary'. Calcully and revo | ulate the work done, versibly at 298K to twi | when 1.5 moles ce the original | | A.
B.
C.
D.
E. | Define thermodynamics system. Define the thermodynof an ideal gas are exvolume (Given: R = 8.314JK Explain the term i) Define the following i) Acidity iii | namic term 'bound
cpanded isotherma
⁻¹ mol ⁻¹).
Enthalpy | dary'. Calcully and revo | ulate the work done, versibly at 298K to twi | when 1.5 moles ce the original | | A.
B.
C.
D.
E. | Define thermodynam
system.
Define the thermody
of an ideal gas are ex
volume
(Given: R = 8.314JK
Explain the term i)
Define the following | namic term 'bound
cpanded isotherma
-1 mol ⁻¹).
Enthalpy
terms: | dary'. Calcully and revolution | ulate the work done, versibly at 298K to twi | when 1.5 moles ce the original variety related? | 56905 Page 2 of 4 | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Y V. | |-------|---|---------| | Q.3 | Attempt any four of the following. | 6 20 of | | | A. What is a node? Discuss the angular shape of any one orbital? | 05 | | | B. Explain principal quantum number 'n' and orbital angular momentum (l). | 05 | | | C. Discuss penetration and shielding in orbitals. | 05 | | | D. Explain all periods with their elements in the long form of the periodic table. | 05 | | | E. Write a note on effects of atomic and ionic radii on elements. | 05 | | | F. Define electron gain enthalpy and explain factors affecting it. | 05 | | Q.4 | Attempt any four of the following. | | | | A. Give IUPAC names of the following. | 05 | | | Cl. | K V | | | i) CH3-CH-CH-CH3 ii) CH3-CH-CONM2 SH5- BL | | | | 70.3 | | | | 2Ns- | | | | 111) CHS- 11) HS- CEC-CH-SH- V) NC-CH-CH-O-CH-CH-O-CH-O-CH-O-CH-O-CH-O-C | Ŋ | | | 11) HC-CEC-CH-218 1/32 7 | 3 | | | Ny cl | | | | | | | | B. Identity the type of hybridization of 'O' in | 05 | | | H-C-H VERNER | | | | Describe the structure with a orbital diagrams. | | | | C. Distinguish between sp and sp ² hybridization. | 05 | | | D. i) Identify which of the following is a stronger base. Give reasons for your answer. | 03 | | | LC. | | | | 3 N-H. | | | | CHINA UC | | | A | CH3NN2 N-H. | | | 130 | | | | 9 A C | ii) Explain why pi bonds are more reactive than sigma bonds. | 02 | | | | | 56905 Page 3 of 4 relative stabilities giving reasons. F. Draw structures for the following. iii) 3 – ethyl cyclobutane carbaldehyde i) 2 - methyl - 2 butanol anhydride E. Draw the structure of primary, secondary and tertiary carbanions. Compare their ii) 4 – chlorobutanic acid iv) cyclopentanone **05** **05** v) ethanoic ## Paper / Subject Code: 81108 / Chemistry : Paper I | Q.5 Attempt any | four of | the following. | |-----------------|---------|----------------| |-----------------|---------|----------------| | A. | Explain enthalpy of combustion and give its applications. | 05 | |----|---|------| | В. | If lead content in Venegar is 0.2mg/L, how much is that in parts per billion. | 05 | | C. | Calculate the effective nuclear charge of the last electron in an atom whose | 05 | | | configuration is $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^5$. | 200 | | D. | Discuss Mulliken's method for calculating electronegativity of elements. | 05 | | E. | Explain Inductive effect. Using suitable examples. Explain its effect on acid strength. | 05 | | F. | i) Distinguish between homolytic and heterolytic fission. | 04 | | | ii) Give an example of a substitution reaction. | > 61 | *****