[Time: Three Hours] [Marks: 100]

Please check whether you have got the right question paper

NB: 1.All questions are compulsory

- 2. Answers to the same questions must be written together
- 3. Figures to the right indicate full marks
- 4. The use of log table/ non programmable calculator is allowed

Q 1	(A)		Select the correct option and complete the following	owing
		• \	statements (Any twelve)	32200000000
		i)	The rate law of the reaction $A + 2B \longrightarrow Pr$	_
			by $d[Product]/dt = k[A]^2$.[B]. If A is taken in la	rge excess, the
			order of the reaction will be	
			a) 0 b) 1 c) 2	407 457 EV V
		ii)	does not influence the rate of reac	etion.
			a) Concentration of the reactants	
			b) Temperature of the reactants	
			c) Molecularity of the reactants	
		iii)	For a single step reaction $A + 2B \longrightarrow Produ$	cts, the
			molecularity is	
			a) 1 b) 2 c) 3	
		iv)	property increases with rise in ter	mperature.
			a) Viscosity b) Surface Tension c) Va	pour pressure
		v)	Unit of Surface tension is	
		2000	a) $N m^{-1}$ b) $N m^2$ c) N^{-1}	m
	25	vi)	Plants get water through the roots because of _	
		3,2,4,7	a) viscosity b) capillary action c) grav	
	OF ST	vii)	Fullerene is an allotrope of	•
			a) sulphur (b) carbon (c) tin	
		viii)	Ion O_2^{-2} is called ion .	
			70, 73, 73, 73, 73, 74, 73, 73, 73, 73, 73, 73, 73, 73, 73, 73	peroxide
355		ix)	Li combines with nitrogen to form	
	25.6		a) LiN b) Li_2N c) Li	- 3N
300		x)	Outer electronic configuration of Group 14 is _	
333	3000		a) ns^2np^1 b) ns^2np^2 c) ns	
S	3200	xi)	Alkali metals react with water to form hydroxic	1
	2,45		alkali metal reacts least vigorous	
		\$ \$ 50 S	a) Li b) Na c) Cs	, , , , , , , , , , , , , , , , , , ,
		xii)	Oxidation state of sulphur in H_2SO_4 is	
150 CT		AHI	a) +6 b) +5 c) -6	
		xiii)	Molecule even with one chiral carbon atom can	have
	2000	XHI)	▼ <i>₹</i>)	
	47,04		a) Enantiomers b) diastereomers c) both	h a and b

	xiv)	Theisomer has atleast two similar groups on the same							
			of the double bond.						
		a)	Cis b) tran	ıs	c) Cis and trans				
	xv)	used to measure optical rotation.							
					er c) Potentiometer	7,9			
	xvi)	ge formula indicate the bond							
		plane of paper.							
		a)	above the b) on	the	c) below the				
	xvii)								
		f symmetry c) Both a and b	13.67						
	xviii)								
	ŕ	in							
		a)	enantiomers b) ge	ometr	ical isomers				
			diastereoisomers						
		- /							
(B)		State whether the following statements are True or False (Any Three)							
	i)	Molecularity of a reaction is always an integral whole number.							
	ii)	A molecule on the surface of a liquid is surrounded by other							
	,	molecules and they are equally attracted in all directions.							
	iii)	Metallic character increases across the period as we move							
	, 6	from left to right.							
	iv)	Electronegativity of fluorine is more than that of chlorine.							
	v) 555	Nicol prism is used for obtaining plane polarized light.							
	vi)	X-ray diffraction is employed to find the absolute							
8		configuration of a molecule.							
	30 7 2		guration of a molecu						
(C)		Match the following columns (Any Five)							
47.0			Column A		Column B	(5)			
	6 5 6 6 6 6 C	(i)	Unit of rate constant	(a)	Al ₂ O ₃				
			of first order reaction						
		(ii)	Coefficient of	(b)	Ca(OH) ₂				
256			Viscosity						
		(iii)	Amphoteric	(c)	Two asymmetric carbon				
		(iv)	Caustic soda	(d)	s^{-1}				
		(v)	Tartaric acid	(e)	NaOH				
		(vi)	Meso form	(f)	$\pi r^4 t p / 8vl$				
				(g)	$mol L^{-1} s^{-1}$				
	0,000		0,	(h)	Plane of symmetry				

Q. 2		Att	empt any Four of the following	300
	(A)		Derive an expression for the rate constant of a second order	(5)
			reaction of reactants having equal concentration.	22
	(B)	i)	What is meant by order of a reaction?	(1)
		ii)	Explain the half life time method for the determination of order	(4)
			of a reaction.	15/19
	(C)		A first order reaction takes 20 minutes for 25% decomposition.	(5)
			Calculate the	
		i)	rate constant	
		ii)	time taken for 75% of the reaction to be completed.	
	(D)	i)	Define Viscosity of liquid?	(1)
		ii)	Explain determination of viscosity by Ostwald's viscometer?	(4)
	(E)		At 293K, water formed 30 drops while flowing through the capillary of a Stalagmometer and an organic liquid formed 49	(5)
			drops. Calculate the surface tension of organic liquid if the	
			densities of water and organic liquid are 0.998 x 10 ³ kg m ⁻³ and	
			0.851 x 10 ³ kg m ⁻³ respectively and surface tension of the water	
			at 293K is $7.28 \times 10^{-2} \text{ N m}^{-1}$.	
	(F)		Define refractive index. How is Abbe's refractometer used for	(5)
	(-)		determining refractive index of any liquid?	(-)
Q. 3			Attempt any Four of the following	
	(A)		What is inert pair effect? Explain with suitable examples.	(5)
	(B)		Explain the diagonal relationship between beryllium and	(5)
			alumunium	
	(C)	49.25	Illustrate the anomalous behaviour of nitrogen.	(5)
	(D)		How is calcium carbonate prepared? Explain its important	(5)
			applications.	
	(E)	Si Color	How is sodium chloride obtained? Mention any three of its	(5)
	5000		properties.	
	(F)	0.00	What are carbides? How are alkali metal carbides prepared?	(5)

Q. 4 Attempt any Four of the following

- (A) Explain the terms i) asymmetric carbon and ii) diastereomers (5)
- (B) Assign 'R' or 'S' descriptors to the following molecules by mentioning priority order of substituents. (5)

- (C) Distinguish between the following: (5)
 - i) racemic mixture and meso form
 - ii) optical isomerism and geometrical isomerism
- (D) Discuss the following terms: (5)
 - i) chirality
 - ii) enantiomers
- (E) i) What is resolution of racemic mixture? (2)
 - ii) Assign 'D' and 'L' nomenclature to the following compounds. (3)

(F) Discuss conformational analysis of ethane. (5)

Q 5 Attempt any Four of the following

- (A) Draw a graph of (5)
 - i) $\log a / (a-x)$ vs time.
 - ii) log (a-x) vs time.

 for a first order reaction where 'a' is the initial concentration of the reactant and '(a-x)' is the concentration of the reactant remaining at a particular time.
 - iii) How is the rate constant determined from each of the graph.
- (B) Define Optically active compound? The density of methyl acetate is 0.928×10^3 kg m⁻³ at 293 K. Its refractive index for sodium D-line is 1.3594. Calculate its molar refractivity.

 (Given: Molecular weight of Methyl acetate = 74).
- (C) Name the oxides of carbon. Write any one source of emission (5) and control measure for each of the oxides of carbon.
- (D) Write short note on acid rain. (5)
- (E) Explain optical isomerism of lactic acid. (5)

(F) Convert the following Fisher projection formulae to Sawhorse (5) projection formulae.

