TYBA-GEO-SEM-VI-PAPER-6-Practical-Geography-munotes

Page 1

1 1

NATURE OF DATA AND CENTRAL
TENDENCY
Unit Structure :
1.1 Objective
1.2 Introduction
1.3 Need and importance of the statistical techniques
1.4 Nature of the statistical data
1.5 Frequency distribution
1.6 Measures of Central tendency - Mean
1.7 Measur es of Central tendency - Median
1.8 Measures of Central tendency - Mode
1.1 OBJECTIVE
 To understand the need & importance of the statistical techniques.
 To understand classification & tabulation of data.
 To study statistical techniques.
1.2 INTRODUCTI ON
We are in the 21st century. In the era of Globalization - Scientific
inventions & Widespread use of technology lot of information is available
in different forms. This information can be in the qualitative form e.g.
Information about the people, area, subject etc. or it can be in the
quantitative form i.e. Numerical data.
Quantitative information is more precise than the qualitative information.
Hence it is widely use in research & development processes. Statistical
techniques help us to store, classif y and analyse data so that we can
compare it & draw inferences or to make use of this data for our projects.
Hence it is necessary & very interesting to study various statistical
techniques.

munotes.in

Page 2


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
2 1.3 NEED AND IMPORTANCE OF THE STATISTICAL
TECHNIQUES
Last cen tury witnessed large scale development in the field of science and
technology. Modern machines like calculator and computers have become
common and are part of our everyday life. But these are just machines.
They can do analysis of data but they require su itable programme or
software for all operations. It is necessary to understand various statistical
techniques so that we can select suitable programme for the analysis of our
data. Statistical techniques help us to compress large amount of data and
help us in the analysis of the data so that we can interpret results and can
take proper decision instantly.
Statistical operations form basis of the entire field of science & commerce.
These are very essential for our development.
1.4 NATURE OF THE STATISTICAL DATA
Information or data can be in different forms.
a) Qualitative data - Descriptive data e.g. Biography of a person,
decription of a project etc.
b) Quantitative data - Numerical data e.g. Amount of rainfall in
different regions; Agricultural productio n, population etc. various
statistical techniques are designed for the analysis of the quantitative data.
Data can also be classified as
a) Spatial data
b) Temporal data
a) Spatial data - Data related to space, area, region, village, Town,
Taluka, Distri ct, State, Nation etc.
b) Temporal data - Data related to time e.g. growth of population from
1901 to 2011, Production of wheat from 1961 to 2011
Statistical data can be obtained from various sources. On the basis of
collection of data it can be classifie d as
a) Primary data
b) Secondary data
a) Primary data - As the name indicates, primary data are collected for
the first time and are thus original in character.
Primary data can be collected in different forms.
1) Direct personal investigation
2) Indirect oral investigation munotes.in

Page 3


Nature of Data and Central
Tendency
3 3) By schedules and questionnaires
4) By local reports
b) Secondary data - Secondary data are those which have already been
collected and analysed by someone else. Secondary data may be either
published or unpublished. The sources of published data (secondary data)
are as follows -
1) Central, State & local government publications.
2) United nation’s reports, World Bank report etc.
3) Reports of companies, NGO & other organization.
4) Journals related to different subjects.
5) Research reports

Types of Statistics

Descriptive Statistics Inferential Statistics


Designed to describe & explain the
geographical situation by obtaining
quantitative information

e.g. an evaporation index price index

Mean
Median
Mode
Range
Quartile Deviation
Mean Deviation
Standard Deviation Helps to make probabilistic
statements
Regarding hypothesis,
About relationships between
variables
About population from which
samples are drawn
Correlation
Regression
Hypothesis testing

munotes.in

Page 4


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
4 1.5 FREQU ENCY DISTRIBUTION
Frequency distribution helps us to classify large amount of data into 5 -10
classes, so that it becomes more compact and can be used for further
analysis. Let us understand following examples.
Q.1 Prepare frequency distribution table for the following data.
Amount of rainfall at 50 places of ‘X’ district. (Rainfall in cm)
25 210 420 170 370 290 310 185 280 240
125 310 30 470 220 110 40 410 75 127
490 90 320 140 22 175 130 130 190 60
410 138 410 95 360 380 80 170 45 260
330 470 140 280 130 160 420 230 270 140

Let us find out smallest and largest number in the given data.
Smallest number = 25
Largest number = 490
Now we can take fire classes to cover this data as a 0 -100, 100 -200, 200 -
300, 300 -400 and 400 -500.
Let us prepare frequ ency distribution table.
Class Tally Score Frequency
0 - 100 IIIIIIIIII 10
100 - 200 IIIIIIIIIIIII 16
200 - 300 IIIIIIII 09
300 - 400 IIIIII 07
400 - 500 IIIIIII 08
Total 30

Tally score are the slant lines used for classification of data. A bunch of 5
is formed as it becomes easy to count numbers in the multiples of 5.
munotes.in

Page 5


Nature of Data and Central
Tendency
5 We can prepare Histogram for this frequency distribution table.

Histogram is a graphical representation of the frequency distribution table.
Just by looking at the Histogram we get complete idea of the distribution
of data in different classes; because bars in the histogram are drawn
proportional to the number of variables in a particular class.
We can also draw frequency polygon for the same data. In order to prepare
frequency polygon join mid points of the top portions of bars drawn in
Histogram.

Join extreme ends of the frequency polygon to the ‘X’ axis as shown in the
diagram.
Frequency Curve can be drawn for the same data. Procedure for drawing
frequency curve is same a s drawing of frequency polygon. But instead of
joining points by straight line, these points are joined by curved line. munotes.in

Page 6


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
6 The statistical data obtained in primary survey, which is not grouped or
classified is termed as the ungrouped data . e.g. Agricultural yield in 20
farms (in thousand tonnes).
500 290 290 180 470
100 800 750 980 850
420 960 700 775 500
150 300 400 375 400

When this data is grouped into different classes in frequency distribution
table it is termed as group data . grouped data can be r elated to Discrete or
Continuous series.
Discrete Series - In this type of data the items are capable of exact
measurement. (No function) e.g. Number of persons, Number of
Countries, Number of rivers etc.
Continuous Series - In this type of data the item s are capable of division
and can be measured in fractions of any size. E.g. Amount of rainfall,
temperature, weight, height of the person etc.
Discrete series Continuous series
No. of Children per
couple No. of
couples Height in
cm. No. of persons
2 40 140 - 150 20
3 10 150 - 160 15
4 05 160 - 170 22

Cumulative Frequency -
Consider following two examples.
1) You wish to distribute milk products for children whose age is less
than 5 years.
2) You are preparing / updating list of persons whose age is more than 18
years, for the purpose of election.
We require less than or more than type of data frequently, for which
cumulative frequency distribution table is prepared.
Q.1 Prepare cumulative frequency distribution table for the following data.
munotes.in

Page 7


Nature of Data and Central
Tendency
7 Rainfall (in cm) No. of regions
0 - 100 10
100 - 200 16
200 - 300 09
300 - 400 07
400 - 500 08
Total 50

To prepare cumulative frequency table, values are progressively added or
subtracted as shown in the following table.
Rainfall
(in cm) Region s Cumulative frequency
less than Cumulative frequency
more than
0 - 100 10 10 50
100 - 200 16 26 40
200 - 300 09 35 24
300 - 400 07 42 15
400 - 500 08 50 08
Total 50

Cumulative frequency curve are also termed as ogive .

munotes.in

Page 8


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
8

1.6 MEASURES OF CENT RAL TENDENCY
In order to compare one set of data (1000 values) with another set of data
(1000 values) we require average or central number which represents the
entire data.
“Average is an attempt to find one single figure to describe whole of
figures.”
- Clark
Average is normally value near to the middle value in the given data, so it
is also called as the Central value . Some values in the data are less than the
average value and same values are more than the average value.
e.g. Find out average of fol lowing numbers.
1, 2, 3, 4, 5
Let us add these numbers 1 + 2 + 3 + 4 + 5 = 15.
Total number of values = 5
Average 1535
Average of the given numbers is 3.

munotes.in

Page 9


Nature of Data and Central
Tendency
9 Average value, being central value is also termed as Measures of Cen tral
Tendency. Different types of measures of central tendency are
1) Mean
2) Median
3) Mode
1) Mean - It is also termed as ‘average’ or arithmetic mean. It is obtained
by adding together all items and by dividing this total by the number of
items. XXn
Where X Arithmetic average or mean
X Total of all values in the data.
n Total number of values.
Find out mean of the following data 0, 10, 20 0 10 20 30X   Total of all values in the data. 3n Total number of values.
30103XXn  X(Mean) = 10
Ungrouped data
Mean - 1, 2, 4, 6, 8, 10, 10 1 2 4 6 8 10 10 417
41
7
5.85X
n
XXN   
 


The average value of the given data according to the Mean is 5.85


munotes.in

Page 10


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
10 Grouped data - discrete -
Mean -
Rainfall
(in cm) Regions
100 2
200 5
300 3

Rainfall
(in cm) X Regions
f
fx
100 2 200
200 5 1000
300 3 900
210010210010210X
ffXXfcms

 
 

The average amount of rainfall per region according to mean is 210 cms.
Grouped data - continuous -
Mean -
Rainfall
(in cm) X Regions
f Mid point
x
fx
0 - 100 4 50 200
100 - 200 10 150 1500
200 - 300 6 250 1500
20f 3200fX munotes.in

Page 11


Nature of Data and Central
Tendency
11 320020fX
f

Mean fXXf
320020
160X
The average agricultural yield per region according to mean is 160
thousand tonnes.
Merits of Arithmetic Mean -
1) It is central value, it is the centre of gravity balancing values on either
side of it.
2) It is affected by the value of every item in the series.
3) It is easy to understand and calculate.
4) It is calculated by a rigid for mula.
5) It is useful for further statistical analysis.
Limitations of Arithmetic Mean -
1) Extreme values of the data affect Mean -
e.g.
a) Average of 1, 2, 3 is 1 + 2 + 3 =6
63 2
b) but average of 1, 2, 1002 is 1 + 2 + 1002 = 1005 3 = 335
In the second example the extreme value affects Mean.
2) It can not be calculated for incomplete data. i.e. all values are required
for calculation of mean.
1.7 MEASURES OF CENTRAL TENDENCY - MEDIAN
‘Median’ mean s middle value in a distribution (of data). Median splits the
observation into two parts. (lower & higher values) median is also termed
as a Positional average .
The term ‘Position’ means the place of value in a given data.
e.g. munotes.in

Page 12


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
12 Q.1 Find out median for th e following data 1, 2, 4, 6, 8, 10, 10
Median -
1 Median value 12n
71
2
8
2
4thvalue

 2
4
6  Median
8
10
10
 The average value a ccording to median is 6
Q.2 Find out median for the following data 3, 4, 2, 1, 5, 7
Let us rearrange numbers in proper order - 1, 2, 3, 4, 5, 7
As the number is even (six) the mid point will be between 3rd & 4th value.
Hence Median 34 73.522 
Grouped data - discrete
Median -
Rainfall (in cms) - 100, 200, 300
Regions - 2, 5, 3
Rainfall (in cms) Regions f Cumulative
frequency less than
100 2 2
200 5 7
300 3 10
10f
Median 1 115.522th nvalue 
munotes.in

Page 13


Nature of Data and Central
Tendency
13 As this nu mber - (5.5th value) is more than 2 (cumulative frequency) but
less than 7, hence the median is located in the class whose cumulative
frequency is 7. the rainfall amount of this class is 200 cm. The average amount of rainfall pe r region according to median is 200
cms.
Median -
Agricultural yield in
thousand tons Regions
Cumulative frequency
less than
0 - 100 4 4
100 - 200 10 14
200 - 300 6 20
20f

m = middle value 201022n   As number 10 is more than 4 but less than 14, median will be found in
the class 100 - 200 - (median class)



21
1
1
12 11111 100,1 200, 104 10
200 100100 10 410
100100 610
100 10 6Median m cf
f
m 
     
  
   
 
 100 60160 
The average agricultural yield per region according to median is 160
thousand tonnes.
Median 21
1
1111mcf 
11lower limit of the class
21 upper limit of the class munotes.in

Page 14


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
14 1fFrequency of the median class mmiddle value cCumulative frequency of the preceding class

Merits of Median -
1) Extreme values do not affect the median.
2) It is useful for open and data as only the position and not the values of
items must be known.
3) It is easier to compute than the mean.
4) It can be used for qualitative data i.e. where ranks are given.
5) The value of median can be found out graphically.
Limitations of the median -
1) It is necessary to arrange data in proper order for calculation of
median.
2) As it is a positional average , its value is not determined by each and
every observation.
3) It is not much used for further statistical analysis.
4) The value of median is affected by sampling fluctuation than the value
of the arithmetic mean.
1.8 MEASURES OF CENTRAL TENDENCY - MODE
The mode or the modal value is that value in a series of observations
which occurs with the greatest frequency.
Mode - 1, 2, 4, 6, 8, 10, 10
Mode =1 - as 10 is the most common number in the given data.
The Mode, this word is derived from the French w ord ‘La Mode’ means
fashion. Where most of the people in the society use similar type of dress.
Mode is at the highest peak of the frequency curve. munotes.in

Page 15


Nature of Data and Central
Tendency
15

Mode - Discrete series
Rainfall
(in cms) Regions
100 2
200 5  Maximum va lue -  Modal class
300 3 Mode = 20 cms.

The average amount of rainfall received by each region according to mode
is 200 cms.
Mode - Continuous Series
Agricultural production in
thousand tons Regions

0 - 100 4
100 - 200 10  Maximum value - Modal class
200 - 300 6

Mode 1012 110211 12ff
fff 


11 0 2
21 100, 10, 4, 61 200
10 4100 200 1002 10 4 6
6100 10020 10
6100 10010
60010010
100 60160ff f  
 




 munotes.in

Page 16


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
16 The average amount of agricultural production per region according to
mode is 160 thousand tonnes.
The mode can also be obtained by using following formula based upon the
relationship between mean, median & mode.
Mode = 3 Median - 2 Mean

Merits of mode -
1) It is easy to find mode in a given data.
2) It is not affected by the extreme values.
3) It can be used for the qualitative data.
e.g. Most preferred colour of dress by girls.
1) Alka - Pink
2) Swati - Blue
3) Narendra - Red
4) Sonali - Pink
5) Soni - Pink
6) Kshama - Red
From the data it is clear that 3 out of 6 girls prefer Pink and so mode i s
pink colour. We can say that girls prefer pink dresses.
4) The value of mode can also be obtained from frequency curve (without
doing calculation)
Limitations of Mode -
1) The value of mode cannot always be determined. - e.g. in the bimodal
(Two modes) or multimodal frequencies.
2) It is not multi used in further statistical analysis.
3) It does not include all items of the data.
4) It is not much used.


 munotes.in

Page 17

17 2
DISPERSION AND DEVIATION
Unit Structure :
2.1 Objective
2.2 Introduction
2.3 Measures of dispersion -Range
2.4 Quartile Deviation
2.5 Mean Deviation
2.6 Standard Deviation
2.7 Moving Average
2.8 Area Mean
2.1 OBJECTIVE
 To understand the concept of disper sion.
 To study various types of dispersion.
 To understand techniques of moving average & area mean.
2.2 INTRODUCTION
In measures of central tendency we get one representative number (Mean,
Median or Mode) for the given data. hence we can compare two set s of
data easily.
e.g. Set A = Mean = 80% marks
Set B = Mean = 40% marks
In this case distinction between two sets of data is very clear. So we can
compare them & take decision.
Now consider following example.
Set X = 0, 10, 20
Set Y = 10, 10, 10
munotes.in

Page 18


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
18 0 10 20 3030103       Set XXXn
0 10 10 3030103        SetYXXn
Average value or mean for set X & set Y is same. Now it is difficult to
compare these two sets.
Hence we require Measures of dispersion.
It is degree to which numerical data tend to sprea d about an
average value is called the variation of dispersion of the data.

Range is one of the type of dispersion technique.
Range = Max. Value - Min. Value
Set X = 0, 10, 20 = Maximum Value = 20
Min. Value = 0
Range = 20 - 0 = 20
Set Y = 10, 10, 10 = Maximum Value = 10
Min. Value = 10
Range = 10 - 10 = 0
Range is zero for Set Y. Which means the average value for Set ‘Y’ is
more reliable than the average value for Set ‘X’
2.3 RANGE
Range is the differ ence between the value of the smallest item and the
value of the largest item included in the distribution.
Range = Max. Value - Min. Value
For ungrouped data
Find out range for the following data.
5, 1, 7, 8, 15, 20, 9, 10, 12, 14, 21, 3, 6, 5, 5, 2, 4 , 10
Maximum Value = 21
Minimum Value = 1
Range = 21 - 1 = 20 munotes.in

Page 19


Dispersion and Deviation

19 Grouped data - discrete -
Range -
Rainfall
(in cm) Regions
100 2
200 5
300 3

Maximum amount of rainfall = 300 cms.
Minimum amount of rainfall = 100 cms
Range = 200 cms. Range, is 200 cms of rainfall. i.e. the amount of variation in the rainfall
according to range is 200 cms.
Grouped data - Continuous -
Range -
Agricultural
Production in
thousand tons Regions
0 - 100 4
100 - 200 10
200 - 300 6

Maximum agricultural production = 300 thousand tons
Minimum agricultural production = 0 thousand tons
Range = 300 thousand tons
Merits of Range -
1) Simplest & easiest method of dispersion.
2) It requires minimum time to calculate range.
Limitations of Range -
1) Range is not based on each and every item of the distribution.
2) Range is most unreliable measure of dispersion.
e.g.

munotes.in

Page 20


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
20 2.4 QUARTILE DEVIATION
Quarter means 25%. In quartile deviation data is divided into four parts
(25% each). First quarter is at 25%, Second quarter is at 50%, third quarter
is at 75%, Fourth quarter is at 100%.
Difference in the third (Q3) and first (Q1) quartiles is termed as inter
quartile range.
Inter quartile range = Q3 - Q1

Inter quartile range is reduced to the form or semi -inter quartile range or
quartile deviation; by dividing it by 2.
Quartile Deviation -
31..2QQQD

Quartile deviation gives the average amount by which the two quartiles
differ from the median (50%)
Quartile deviati on -
Rainfall (in cms) Regions
Cumulative frequency
less than
100 2 2
200 5 7 Q.1 300 3 10 Q3
10f

11 10 2.5 1 2004
33 10 7.5 3 3004     
     Q region Q
Q region Q munotes.in

Page 21


Dispersion and Deviation

21 312300 2002
100
250

 QQQuartiledeviationcms
Quartile deviation -
Agricultural yield
thousand tons Regions
Cumulative frequency
less than
0 - 100 4 4
100 - 200 10 14
200 - 300 6 20
20f

11 20 5 100 2004    Q Agricultural production thousand tons
33 20 15 200 3004   Q Agricultural production thousand tons




21
11,
200 1001 100 5 410
100100 110
100 10
110
300 2003 200 15 1410
100100 16
200 16.6216.6 
 
 
 

 
 
 llMedian m cf
Q
Q
munotes.in

Page 22


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
22 Quartile deviation 312QQ
216.6 110253.3
The variation in the agricultural yield among different regions according
to quartile deviation is 53.3 thousand tonnes.
Merits of Quartile Deviation
1) It is superior to range as a measure of dispersion.
2) It can be used for open end distributions.
3) Quartile deviation is not affected by the extreme values.
Limitations of Quartile Deviation
1) Quartile deviation ignores 50% items. i.e. the first 25% and last 25%.
2) It is not much used for further statistical analysis.
3) It’s value is affected by sampling fluctuations.
2.5 MEAN DEVIATION
The Mean deviation is also known as the average deviation. It is the
average difference between t he items in a distribution and the median or
mean of that series.
In mean deviation of each item in the series is found out from the median.
All deviations are added together (ignoring + or - signs). This total is
divided by the number of observations.
Mean Deviation dn dSum of all deviations nnumber of observations / items

Calculate mean deviation for the following series.
X 10 11 12 13 14
F 3 12 18 12 3
munotes.in

Page 23


Dispersion and Deviation

23 Answer -
X f d fd c.f
10 3 2 6 3
11 12 1 12 15
12 18 0 0 33
13 12 1 12 45
14 3 2 6 48
48n 36fd

Mean deviation fdn
Median = size of 12thn item
48 124.5thnitem
Size of 24.5th item is 12
Hence Median = 12
M.D. 360.7548
Mean Deviation - Continuous series
Q.2 Calculate the median and mean deviation of the following data.
Size Frequency Size Frequency
0 - 10 7 40 - 50 16
10 - 20 12 50 - 60 14
20 - 30 18 60 - 70 8
30 - 40 25


munotes.in

Page 24


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
24 Answer -
Size f c.f. Mid
point m d = m -
35.2 fd
0 - 10 7 7 5 30.2 211.4
10 - 20 12 19 15 20.2 242.4
20 - 30 18 37 25 10.2 183.6
30 - 40 25 62 35 0.2 5.0
40 - 50 16 78 45 9.8 156.8
50 - 60 14 92 55 19.8 272.2
60 - 70 8 100 65 29.8 238.4
100f 1314.8fd

Median = size of 2thn item 100502thitem
Median lies in the class 30 - 40
Median 1/2 . .1 nc fif 11 30, / 2 50, . . 35, 25, 10 40 30   nc f f i
Median 50 3730 1025 
30 5.2 35.2 
Mean deviation 1314.813.148100 fdn
Merits of Mean Deviation -
1) It is relatively simple to understand & compute.
2) It is based on each a nd every item of the data.
3) It is less affected by the extreme items of the data.
Limitations of M.D. -
1) Algebraic signs (+, -) are ignored in M.D.
2) It may not give us accurate results.
3) It is not capable of further statistical analysis. munotes.in

Page 25


Dispersion and Deviation

25 2.6 ST ANDARD DEVIATION
Standard deviation is the square root of the arithmetic average of the
squares of the deviations measured from the mean.
To find the S.D. the following steps are taken.
1) Find the deviations from the mean.
2) Square those deviations.
3) Find the mean of the sum of these deviations squared.
4) Find the square root of this mean.
Standard deviation -Grouped data - discrete.
Q. Find out S.D. for the following data.
Yield (in 000’ kg)
(X) No. of regions
(f)
40 10
45 15
50 25
55 30
60 28
65 13
70 9

Yield
(X) Regions (f) fx
Mean7130130fx
f
40 10 400
45 15 675 Mean55X
50 25 1250
55 30 1650
60 28 1680
65 13 845
70 9 630
130f 7130fx
munotes.in

Page 26


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
26 Ungrouped data -
Standard deviation -
1, 2, 4, 6, 8, 10, 10
X d 2d Mean xn
1 - 4.9 24.0 417
5.85
5.9X
dXX 2 - 3.9 15.2
4 - 1.9 3.6
6 0.1 0.01
8 2.1 4.4
10 4.1 16.8
10 4.1 16.8 41x 280.8d
Standard deviation 2dn
80.8711.543.39

 Standard deviation of the given data is 3.39.
Standard deviation - ungrouped data.
Find out S.D. for the following data.
Height (in inches) 60, 60, 61, 62, 63, 63,63, 64, 64, 70
Height (in inches)
X Deviations from
mean 63
d
2d Mean xn
60 - 3 9 63010
60 - 3 9
61 - 2 4
62 - 1 1 munotes.in

Page 27


Dispersion and Deviation

27 63 0 0 63
XX

63 0 0
63 0 0
64 +1 1
64 +1 1
70 +7 49 630x 274d

Standard deviation or 2dn
74107.42.72
 Deviation in height according to Standard deviation is 2.72.
Group data -
Standard deviation - Continuous series.
Find out S.D. for the following data.
Rainfall
(in cm) Regions
0 - 100 2
100 - 200 5
200 - 300 4
300 - 400 2




munotes.in

Page 28


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
28 Rainfall
(in cm) Mid poin t
X
f fx
Mean fxf 255013 196.15
dX X 0 - 100 50 2 100
100 - 200 150 5 750
200 - 300 250 4 1000
300 - 400 350 2 700
13f 2550

Rainfall
(in cm) Mid point X
f Deviation
from mean
196.15 (d) fd 2fd
0 - 100 50 2 - 146.15 292.3 42719.6
100 - 200 150 5 - 46.15 230.75 10649.1
200 - 300 250 4 53.85 215.4 11599.3
300 - 400 350 2 153.85 302.7 47339.6
13f 1046.2fd 2112307.6fd 2fdf
112307.613
8639
92.95

cms Rainfall variability according to S. D. is 92.95 cms.




munotes.in

Page 29


Dispersion and Deviation

29 Standard deviation -
Rainfall
(in cm)
X Regions

f

fx

Mean210010fxf

210XdXX 100 2 200
200 5 1000
300 3 900
10f 2100fx
Rainfall (in cm)
X Regions

f Deviation from
mean =210
d fd 2fd
100 2 - 110 - 220 24,200
200 5 - 10 - 50 500
300 3 90 270 24,300
10f 249,000fd

S.D. 2fdf
49000104900

S.D. = 70 cms. of rainfall
Variation in the amount of rainfall according to standard deviation is 70
cms.


munotes.in

Page 30


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
30 Standard deviation -
Agricultural
Production in
thousand tonnes Mid point X Regi ons
f fx
0 - 100 50 4 200
100 - 200 150 10 1500
200 - 300 250 6 1500
20f 3200fx

Mean 320016020fx
f
160X thousand tons. dX X

Agricultural
Production in
thousand tons Mid
point
X Regions
f Deviation
from
mean 160
d fd 2fd
0 - 100 50 4 - 110 440 48,400
100 - 200 150 10 - 10 100 1000
200 - 300 250 6 90 540 48600
20f 298,000fd

Standard Deviation 2fdf
98,000204900

= 70
The variation in the agricultural producti on among diff regions according
to standard deviation is 70 thousand tons.
munotes.in

Page 31


Dispersion and Deviation

31 Merits of S.D.
1) It is the best method of deviation.
2) It is based on every item of the distribution.
3) It is used in further statistical analysis.
Limitations of S.D.
1) It is difficult & time consuming to calculate than other methods.
2) It gives more weight to extreme items & less to those which are near
the mean.
2.7 MOVING AVERAE
In moving average method averages of three or five years are calculated,
so that we are able to remove yearly fluctuations in the data & we can get
general trend. The 3 yearly moving average shall be computed as follows. , , .....333abc bcdcde  
The 5 yearly moving average shall be computed as follows : , , .....55 5abcde bcdefcdef g  
Q.1 Calculate 3 yearly moving average of the production figures given
below & draw trend line.
Year Production Year Production Year Production
1973 15 1978 46 1983 74
1974 21 1979 50 1984 82
1975 30 1980 56 1985 90
1976 36 1981 63 1986 95
1977 42 1982 70 1987 102
(Note : Production in million tonnes)




munotes.in

Page 32


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
32 Answer :
Year Production 3 Yearly total 3 yearly average
1973 15 -- --
1974 21 66 22
1975 30 87 29
1976 36 108 36
1977 42 124 41.33
1978 46 138 46
1979 50 152 50.67
1980 56 169 56.33
1981 63 189 63
1982 70 207 69
1983 74 226 75.33
1984 82 246 82
1985 90 267 89
1986 95 287 95.67
1987 102 --


 munotes.in

Page 33

    33 3
CORRELATION, REGRESSION &
HYPOTHESIS TESTING

Unit Structure :
3.1 Concept / Objective  
3.2 Introduction   
3.3 Correlation  
3.4 Regression  
3.5 Chi-square test  
3.1 OBJECTIVE
 To understand correlation between two series.   
 To study the concept of Regression  
 To understand 2X test.  
 To understand SPSS package.   
3.2 INTRODUCTION
Correlation  analysis  deals  with  the  association  between  two  or  more 
variables.   
Correlation analysis  attempts to determine the ‘degree of relationship’ 
between variables.   
Regression analysis reveals average relationship between two variables 
and this makes possible estimation or prediction.   
The 2Xtest (pronounced  as chi-square test) is one of the simplest & most 
widely used non -parametric test in statistics. The quantity 2Xdescribes 
the magnitude of the discrepancy between theory and observation.   
SPSS means statistical package for social  studies.  
Correlation - 
Association  or  correlation  between  two  variables  can  be  studied  in 
different ways.   
1) Scatter diagram  
2) Rank correlation  munotes.in

Page 34

  
 Tools and Techniques in 
Geography for spatial 
Analysis-II (Practical)   
34 Scatter diagram - 
In this method dots are given on the paper with reference to ‘X’ and ‘Y’ 
axis. Each dot rep resents co -ordinates of that point. Alignment of dots (or 
scatter) represents correlation or association between two variables. Let us 
understand this concept with the help of following examples.   
Q.1 Draw scatter diagrams for the data given below and deci de nature of 
association between two variables.   
Example 1  
X 10 20 30 40 50 
Y 1 2 3 4 5 
 
Example 1  
X 10 20 30 40 50 
Y 5 4 3 2 1 
 
Example 1  
X 10 20 30 40 50 
Y 5 1 4 3 2 
 
 
3.3 RANK CORRELATION
This method of correlation was developed by the British ps ychologist 
Charles Edward Spearman in 1904.  
In  this  method  ranks  are  given  to  the  values  in  ‘X’  and  ‘Y’  sets  of 
variables correlation is calculated using following formula.   munotes.in

Page 35

 
 Correlation, Regression & 
Hypothesis Testing  
 
35  22611dr
nn 
Where r Rank correlation.   
         d Difference in the rank ‘X’ and rank ‘Y’  
        2dTotal & square of all differences.   
        n number of pairs.   
Q.1 Calculate the coefficient of correlation from the  following data by the 
Spearman’s Rank difference method.   
Height (in 
cm) 140 145 150 155 160 
Weight in kg  50 52 55 60 65 
 
Answer - 
Height (in 
cm) Weight in 
kg Rank 
X Rank 
Y d=Rank X  - Rank 
Y n 
140  50 1 1  0  0 
145  52 2 2  0  0 
150  55 3 3  0  0 
155  60 4 4  0  0 
160  65 5 5  0  0 
        20d  
 
226116015 25 16015 24
101dr
nn  
  
Hence there is perfect positive correlation between height & weight which 
means if the height is more, weight is also more & if the height is less  
weight is also less.   
 munotes.in

Page 36

  
 Tools and Techniques in 
Geography for spatial 
Analysis-II (Practical)   
36 Q.2 Calculate the coefficient of correlation from the following data by the 
Spearman’s Rank method.   
Price of Tea 
(Rs.) Price of 
Coffee (Rs.)   Price of 
Tea (Rs.) Price of 
Coffee (Rs.)  
75  120  60  110 
88  134  80  140 
95  150  81  142 
70  115  50  100 
 
Answer - 
Price of 
Tea (Rs.) Price of Coffee 
(Rs.) Rank 
X Rank 
Y d= X - Y n 
75  120  4 4 0  0 
88  134  7 5 2  4 
95  150  8 8 0  0 
70  115  3 3 0  0 
60  110  2 2 0  0 
80  140  5 6 -1  1 
81  142  6 7 1  1 
50  100  1 1 0  0 
        26d  

226116618 64 1361504
1 0.0710.929dR
nn  
  
There is story positive correlation between price of tea & price of coffee.   
 
 
 munotes.in

Page 37

 
 Correlation, Regression & 
Hypothesis Testing  
 
37 3.4 REGRESSION
Regression is the measure of the average relationship between two or 
more  variables.  Hence  it  provides  a  mechanism  for  prediction  or 
forecasting.   
Regression analysis provide estimates of values of the dependent variable 
from values of the independent variable.   
Regression lines - 
Normally we deal with ‘X’ and ‘Y’ variables in correlation & regression. 
We can draw two regression lines as   
a) Regression of ‘X’ on ‘Y’ &   
b) Regression of ‘Y’ on ‘X’  
Regression line of ‘X’ on ‘Y’ gives the most probable values of ‘X’ for 
given values of ‘Y’.   
Similarly the regression line of ‘Y’ on ‘X’ gives the most probable valu e 
of ‘Y’ for given value of ‘X’.   
 
However  when  there  is  either  perfect  positive  or  perfect  negative 
correlation between the two variables (r = +1 or r= -1) the regression lines 
will coincide. i.e. we will have only one line.   munotes.in

Page 38

  
 Tools and Techniques in 
Geography for spatial 
Analysis-II (Practical)   
38 
 
When two regression lines a re near to each other, the degree of correlation 
will be higher.   
 
When  two  regression  lines  are  away  from  each  other  the  degree  of 
correlation will be lower.   
 
 munotes.in

Page 39

 
 Correlation, Regression & 
Hypothesis Testing  
 
39 If  there  is  no  correlation  between  the  two  variables  (r=0)  i.e.  if  the 
variables are indepen dent, the regression lines are at right angles to each 
other.  
 
Q.1 From the following data obtain two regression equations.   
X 6 2 10 4 8 
Y 9 11 5 8 7 
 
Answer - 
X  6  XY     
6  9  54  36  81 
2  11  22  4  121 
10  5  50  100  25 
4  8  32  16  64 
8  7  56  64  49 30X 40Y 214XY 2220X 2340Y 
 
Regression equation of Y on X 0Y a bX 
To find out the values of a and b the following two normal equat ions are 
used.  
  2Y Na b xXY a X b X
  
 munotes.in

Page 40

  
 Tools and Techniques in 
Geography for spatial 
Analysis-II (Practical)   
40 Substituting the values  
  40 5 30ab____________ (1)  
  214 30 220ab_________ (2)  
Multiplying equation (1) by 6240 3 180ab__________ (3)  
  214 30 220ab__________ (4)  
Deducting equation (4) from (3)  
  40 260.65b
b  
Substituting the value of b in equation (1)  
  40 5 30 0.655 40 19.5
59.511.9a
aa 

 
Putting he values of a and b in the equation, the regression of Y on X is 11.9 0.65YX. 
Regression line of X on Y 0X a bY and the two normal equations are   
  2XN a bYXY a Y b Y
  
  30 5 40ab____________ (1)  
  214 40 340ab_________ (2)  
Multiplying equation (1) by 8  
  240 40 320ab__________ (3)  
  214 40 340Xb__________ (4)  
From equation (3) from (4)  
  20 261.3b
b  
Substituting the value of b in equation (1)  
  30 5 40 1.35 30 52
8216.4a
aa 

 munotes.in

Page 41

 
 Correlation, Regression & 
Hypothesis Testing  
 
41 Putting he values of a and b in the equation, the regre ssion line of X on T 
is 16.4 1.3XY. 
Drawing Regression Lines - 
Steps for drawing regression lines are as follows.   
1) Choose  any  two  values  (Preferably  well  apart)  for  the  unknown 
variable on the right hand side of the equation.   
2) Compute the other variable  
3) Plot the two pairs of values.   
4) Draw straight line through the plotted points.   
 a) Regression line of Y on X  
  (Y = 11.9  - 0.65 X) 
  1) Let 2, 11.9 0.65 2XY     
               11.9 1.310.6  
  2) Let 10, 11.9 0.65 2XY       
             5.4 
These points and the regression line through them can be represented on 
graph paper.   
b) Regression line of X on Y.  
  16.4 1.3XY 
 1) Let 10,Y 
      16.4 1.3 1016.4 13
3.4 X
 
 
 2) Let  6,Y 
      16.4 1.3 616.4 7.88.6X
 
 
  Let us plot these values on the graph.   
 
 munotes.in

Page 42

  
 Tools and Techniques in 
Geography for spatial 
Analysis-II (Practical)   
42 a) Regression line of Y on X  
 2, 10.610, 5.4XY
XY 
b) Regression line of X on Y  
 10, 3.46, 8.6YX
YX 
 
3.5 2XTEST
The 2X test (pronounced as Chi -square test) is one of the simplest and 
most widely used non -parametric test.   
The 2X indicates the extent of difference between theory (expec ted) and 
observation (actual).  
22OEXE  
2xChi-square test  OObserved frequencies  EExpected frequencies  
 
Steps for determination of 2x 
 munotes.in

Page 43

 
 Correlation, Regression & 
Hypothesis Testing  
 
43 1) It is necessary to calculate expected frequencies.   
 CT RTEn  
     EExpected frequencies  
    CTColumn total  
   RT Row total  
    nTotal number of observations  
2) Find out difference between observed and expected frequencies and 
calculate  the  squares  of  these  differences  i.e.  obtain  the  values  of 
2OE. 
3) Divide the values of  2OE by the res pective expected frequency 
and obtain the total  2/OE E . We get the value of 2x which can 
be from zero to infinity.   
20x means  that  the  observed  and  expected  frequencies  completely 
coincide.  
Greater the difference  between the observed and expected frequencies 
greater will be the value of 2x. 
The calculated value of 2x is compared with the table value of 2x for 
given degrees of freedom at a certain specified level of significance.   
If at the stated level (normally 5% level is selected) the calculated value of 2x is more than the table value of 2x, the difference betwe en theory and 
observation is considered to be significant. Which means it could not have 
arisen due to fluctuations of simple sampling. If on the other hand the 
calculated value of 2x is less than the table value, the difference be tween 
theory and observation is not considered as significant. Which means it is 
regarded as due to fluctuations of simple sampling and hence ignored.   
Degrees of freedom - 
Degrees of freedom means the number of classes to which the values can 
be assigned  at will without violating the restrictions or limitations placed. 
e.g. If we wish to prepare a table which contains 5 numbers and total of all 
numbers is 100 then we can select four out of five numbers as per our 
wish but fifth number we will have to put a fter adding four numbers & 
subtracting total from 100.  
 
 munotes.in

Page 44

  
 Tools and Techniques in 
Geography for spatial 
Analysis-II (Practical)   
44 1 2 3 4 5  
     = 100 
 
Total of these five numbers is 100. We can put aby four numbers as per 
our hoice in these boxes.   
1 2 3 4 5  
05 30 15 40  = 100 
  
Now total of these four numbers is 05 + 30  15 + 40 = 90. We can not put 
fifth number as per our choice.   
We can obtain fifth number by subtracting total of four numbers (90) from 
100. 
  100 - 90 = 10 
  Hence fifth number is 10.  
  In this example the degrees of freedom is 4.   
  In this example our  constraint is only one (1).   
  We can use following formula for calculation of degrees of freedom.   
  VnK Vdegrees of freedom  nnumber of boxes / rows / column  Kconstraint  
In our example n5 & K1. Hence the degrees of freedom is four.   
  514VnkV
V 
For a contingency table used in 2xtest following formula is used for  the 
calculation of degrees of freedom.   
Degrees of freedom 11cr  
 C Columnr Rows 
 munotes.in

Page 45

 
 Correlation, Regression & 
Hypothesis Testing  
 
45   If our table contains two columns & two rows.   
5 20 Total  
10 08 Total  
Total  Total  Grand Total  
 
  This is 22table.  
  The degrees of freedom for all cells is :  
  112121111Vc rV     
  For 33 table.  
 
    Total     Total     Total  Total  Total  Total   
  113131224Vc rV     
It means only four expected frequencies ne ed to be computed. The others 
are obtained by subtraction from normal totals.   
Q.1  In  an  antimalarial  campaign  in  a  certain  area,  quinine  was 
administered to 8/2 persons out of a total population of 3243. The number 
of fever cases is shown below.   
Treatmen t  Fever  No 
Fever Total  Quinine  20 792 812 
No 
Quinine 220 2216 2436 Total  240l 3008 3248 munotes.in

Page 46

  
 Tools and Techniques in 
Geography for spatial 
Analysis-II (Practical)   
46 Discuss the usefulness of quinine in checking malaria.   
Answer - 
It is necessary to prepare hypothesis. Hypothesis in this example is as 
follows.  
Hypothesis =  Quinine is not effective in checking malaria.  2X test - Expected frequency of first column & first row  
     
240 812
324860columntotal RowtotalTotal numberof observations 
 
 Column 1  Column 2  Total  Raw 1 60   812 
Raw 2      
Total  240    3248 
 
 Column 
1 Column 
2 Total  Raw 
1 60 752 812 
Raw 
2 180 2256 2436 
Total  240  3007 3248 
 
O E 2OE 2/OE E  
20 60 1600  26.66 
220 180 1600  3.88 
792 752 1600  2.12 
2216 2256 1600  0.70 
   2/ 38.39OE E   2 2/38.9xO E E munotes.in

Page 47

 
 Correlation, Regression & 
Hypothesis Testing  
 
47 Degrees of freedom 11VC r  
                                        2121111  
For degree of freedom 1V, 2xat 0.05 or 5% level of significance table 
value for 2x is 3.84.  
The calculated value of 2x is greater than the table value, 33.39>3.84.   
The hypothesis is rejected.   
Hence quinine is useful in checking malaria.     













 munotes.in

Page 48

48 4
SAMPLING
Unit Structure
4.1 Objectives
4.2 Introduction
4.3 Subject discussion
4.4 Sample and sample design in Geography
4.5 Sampling Techniques

4.1 OBJECTIVES

By the end of this unit you will be able to:
 Understand Point sampli ng –Systematic and random
 Know the Line sampling – Systematic and random
 Learn Area sampling – Systematic and random
4.2 INTRODUCTION

In this chapter ,we are going to learn about sampling in geography After
knowing what is the sampling we will learn abou t the different types of
sampling li ke point, line and area sampling. Also we will learn the
systmetic and random sampling.

4.3 SUBJECT -DISCUSSION
When you collect any sort of data, especially quantitative data , whether
observational, through surveys or from secondary data, you need to decide
which data to collect and from whom.
This is called the sample .
There are a variety of way s to select your sample, and to make sure that it
gives you results that will be reliable and credible.


munotes.in

Page 49


Sampling

49 4.4 SAMPLE AND SAMPLE DESIGN IN GEOGRAPHY
What is sampling?
 A shortcut method for investigating a whole population
 Data is gathered on a small part o f the whole parent population or
sampling frame, and used to inform what the whole picture is like
Why sample?
In reality there is simply not enough; time, energy, money, labour/man
power, equipment, access to suitable sites to measure every single item or
site within the parent population or whole sampling frame.
Therefore an appropriate sampling strategy is adopted to obtain a
representative, and statistically valid sample of the whole.
Sampling considerations
 Larger sample sizes are more accurate represe ntations of the whole
 The sample size chosen is a balance between obtaining a statistically
valid representation, and the time, energy, money, labour, equipment
and access available
 A sampling strategy made with the minimum of bias is the most
statisticall y valid
 Most approaches assume that the parent population has a normal
distribution where most items or individuals clustered close to the
mean, with few extremes
 A 95% probability or confidence level is usually assumed, for example
95% of items or individ uals will be within plus or minus two standard
deviations from the mean
 This also means that up to five per cent may lie outside of this -
sampling, no matter how good can only ever be claimed to be a very
close estimate
4.5 SAMPLING TECHNIQUES
Three main t wo of sampling strategy:
 Random
 Systematic
Within these types, you may then decide on a; point, line, area method.
munotes.in

Page 50


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
50 Random sampling
 Least biased of all sampling techniques, there is no subjectivity -
each member of the total population has an equal ch ance of being
selected
 Can be obtained using random number tables
 Microsoft Excel has a function to produce random number
The function is simply:
 =RAND()
Type that into a cell and it will produce a random number in that cell.
Copy the formula throughout a selection of cells and it will produce
random numbers.
You can modify the formula to obtain whatever range you wish, for
example if you wanted random numbers from one to 250, you could enter
the following formula:
 =INT(250*RAND())+1
Where INT eliminates th e digits after the decimal, 250* creates the range
to be covered, and +1 sets the lowest number in the range.
Paired numbers could also be obtained using;
 =INT(9000*RAND())+1000
These can then be used as grid coordinates, metre and centimetre sampling
stations along a transect, or in any feasible way.
Methodology
A. Random point sampling
 A grid is drawn over a map of the study area
 Random number tables are used to obtain coordinates/grid
references for the points
 Sampling takes place as feasib ly close to these points as possible
B. Random line sampling
 Pairs of coordinates or grid references are obtained using random
number tables, and marked on a map of the study area
 These are joined to form lines to be sampled

munotes.in

Page 51


Sampling

51 C. Random area sampling
 Random number tables generate coordinates or grid references
which are used to mark the bottom left (south west) corner of
quadrats or grid squares to be sampled

Advantages and disadvantages of random sampling
Advantages:
 Can be used with large sample populations
 Avoids bias
Disadvantages:
 Can lead to poor representation of the overall parent population or
area if large areas are not hit by the random numbers generated.
This is made worse if the study area is very large
 There may be pr actical constraints in terms of time available and
access to certain parts of the study area
Systematic sampling
Samples are chosen in a systematic, or regular way.
 They are evenly/regularly distributed in a spatial context, for
example every two metres al ong a transect line
 They can be at equal/regular intervals in a temporal context, for
example every half hour or at set times of the day
 They can be regularly numbered, for example every 10th house or
person
Methodology
A. Systematic point sampling
A grid can be used and the points can be at the intersections of the grid
lines, or in the middle of each grid square. Sampling is done at the nearest
munotes.in

Page 52


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
52 feasible place. Along a transect line, sampling points for vegetation/pebble
data collection could be identified systematically, for example every two
metres or every 10th pebble
B. Systematic line sampling
The eastings or northings of the grid on a map can be used to identify
transect lines. Alternatively, along a beach it could be decided that a
transect up the be ach will be conducted every 20 metres along the length
of the beach
C. Systematic area sampling
A ‘pattern' of grid squares to be sampled can be identified using a map of
the study area, for example every second/third grid square down or across
the area - the south west corner will then mark the corner of a quadrat.
Patterns can be any shape or direction as long as they are regular.

Advantages and disadvantages of systematic sampling
Advantages:
 It is more straight -forward than random sampling
 A grid doesn't necessarily have to be used, sampling just has to be
at uniform intervals
 A good coverage of the study area can be more easily achieved
than using random sampling
Disadvantages:
 It is more biased, as not all members or points have an equal
chance of being selected
 It may therefore lead to over or under representation of a particular
pattern




munotes.in

Page 53

53 5
FIELDWORK IN THE GEOGRAPHY OF
ANY ONE PLACE/VILLAGE
In this unit , we will learn about geographical report writing . We
understand how to write a geographical report , what methods are used,
and what technique is useful for geographical repo rt writing .
GEOGRAPHICAL FIELD REPORT :
Writing a report of the work carried on in the field is documentation of the
fieldwork . This helps in the systematic reviewing of the work by students
who accomplished the task and is a reference for future field trips. Field
reports must be short, clear, and i nformative with supportive data, maps,
sketches, photographs etc .
There are a nu mber of steps involved in report writing. They are:
Title:
Identify the topic of investigation which is the pur pose of field work. This
is the title of the work and it has to be written in bold letters at the top of
the report.
Introduction:
Every report should start with a brief introduction to the subject under
study. It should explain what part of geography it r elates to. For example
if the study is about a stream, it falls under the branch of physical
geography, more specifically geomorphology - an ex ogenetic agent of
denudation. The time frame that was planned for the fieldwork can be
elaborated. If the field w ork is extending for more than one day, then a
clear timetable should be given.
Need for the Study:
The reason why the field work is undertake n can be mentioned. This
explains the need for the field work.
The Study Area:
Details of the study area are exp lained here – starting with the absolute or
geographical location of the study area, the choice of the study area and
the physiography of the a rea. Other known physical and cultural details of
the study area can be mentioned here. A copy of the map, satell ite image
etc. can be incorporated here.
Methodology Used:
The methods used to carry out the field work have to be mentioned here.
The method of information collection varies according to the type of munotes.in

Page 54


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
54 study. It could be through observation, investigation, m easurements; data
collection from primary and secondary sou rces; field sketches, audio -
video recording and photographs and GNSS surveys.
Data Analysis:
The data collected through fieldwork should be presented in a simple way
for easy analysis. The method o f representation of data should be
according to the metho d of data collected. Example:
1. If the observation method is used in data collection then the data can
be represented as photographs or field sketches.
2. If data is collected through surveys, it can be represented as a plan or
map.
3. Data collected from sec ondary sources can be presented as tables,
graphs, diagrams, or charts.
4. Data collected through GNSS surveys can be mapped.
The data represented in various forms have to be neatly labeled and
indexed f or easy identification and understanding. The photogr aphs,
diagrams, tables, maps etc. prepared during post field work have to be
arranged in a sequential order so that they can provide an answer to the
purpose of study and add more meaning and value to th e report of work
done in the field.
Conclusion:
The conclusion gives the gist of the field work – the aim, the results or
findings and how it relates to existing knowledge and the addition of new
knowledge through this field work. The conclusion has to pre sent how the
fieldwork has enhanced the theoretical knowledge gained in the class.
The table below gives a few steps in the preparation of field report for a
few case studies under physical geography.
munotes.in

Page 55


Fieldwork in the Geography
of any one place/village
55




























munotes.in

Page 56


Tools and Techniques in
Geography for spatial
Analysis -II (Practical)
56



munotes.in

Page 57


Fieldwork in the Geography
of any one place/village
57 Exercise s
1. Measure your school’s play ground and draw a plan of the same .
2. Arrange a field trip to a River li ne area to study the land, the direction
of flow of water, trees and other plants in the area. Make a field
sketch and prepare a short report .
3. Measure the daily temperature at 11.00 am and 4.00 pm and find the
monthly average of maximum and minim um temperature .
4. Plan a field visit to a nearby hilly area to study the slope, gradient,
trees and other plants in that area. Prepare a field sketc h of the same
and write a short report .




munotes.in

Page 58

QUESTION PAPER PATTERN (SEM - VI)
MARKS: -100 TIME:4 HRS
:
1. All questions are compulsory.
2. Figures to the right indicate marks to a sub-question.
3. Use of map stencils and simple calculator is allowed.

Q.1 Unit-I 16Marks

Q.2 Unit–II 16Marks

Q.3 Unit–III 16Marks

Q.4 Unit–IV 16Marks

Q.5 Unit–V 16Marks

Q.6 JournalandViva 20Marks




munotes.in