Page 1
Chapter 1
Multilinear Algebra
Unit Structure :
1.1O b j e c t i v e
1.2k tensor
1.3 Alternating Tensor
1.4W e d g eP r o d u c t
1.5B a s i sf o r ⇤k(V)
1.6V o l u m eE l e m e n to f V
1.7C h a p t e rE n dE x e r c i s e
1.1 Objectives
After going through this chapter you will be able to:
1. Define a multilinear function, k tensor, alternating tensor and
wedge product.
2. Learn algebraic properties of alternating tensor and wedge prod-
uct.
3. Identify basis and dimension of subspace of tensor.
4. Learn the concept of volume element.
3munotes.in
Page 2
CALCULUS ON MANIFOLDS
1.2k tensor
Multilinear Function: IfVis a vector space over R,w ew i l l
denote the k fold product V⇥V⇥...⇥VbyVk. A function T:Vk!R
is called multilinear if for each iwith 1 ikwe have
T(v1,v2,···,vi+v0
i..., v k)=T(v1,v2,···,vi,···,vk)+T(v1,v2,···,v0
i,···,vk),
T(v1,v2,···, avi,···,vk)=aT(v1,v2,···,vi,···,vk).
Example: Consider the function f:R3!Rdefined as, f(x, y, z )=
xyz.S h o wt h a t fis 3 linear.
Solution: We begin by fixing xandzand treat fas a function of one
variable y.
Consider f(x,↵y1+ y2,z)=x(↵y1+ y2)z
=x(↵y1)z+x( y2)z
=↵xy1z+ xy2z
=↵f(x, y 1,z)+ f(x, y 2,z).
shows that fis linear in y.
Similarly we can show that fis linear in xandzvariables.
k tensor: A multilinear function T:Vk!Ris called a k tensor
onVand the set of all k tensors denoted by =k(V), becomes a vector
space over Rif for S, T2=k(V)a n d a2Rwe define
(S+T)(v1,v2,···,vi,···,vk)=S(v1,v2,···,vi,···,vk)+T(v1,v2,···,vi,···,vk),
(aS)(v1,v2,···,vi,···,vk)=aS(v1,v2,···,vi,···,vk).
Tensor Product: There is an operation connecting the various
spaces =k(V). If S2=k(V)a n d T2=l(V), we define the tensor
product S⌦T2=k+l(V)b y
S⌦T(v1,v2,···,vk,vk+1,···,vk+l)=S(v1,v2,···,vk)·T(vk+1,···,vk+l).
Note: The order of the factors SandTis crucial here since S⌦T
andT⌦Sare far from equal.
T⌦S(v1,v2,···,vl,vl+1,···,vl+k)=T(v1,v2,···,vl)·S(vl+1,···,vl+k).
Example: IfS1,S22=k(V),T2=l(V),U2=m(V)a n d a2R
then Show that
(1) ( S1+S2)⌦T=S1⌦T+S2⌦T,
(2) S⌦(T1+T2)=S⌦T1+S⌦T2,
(3) ( aS)⌦T=S⌦(aT)=a(S⌦T),
(4) ( S⌦T)⌦U=S⌦(T⌦U).
4munotes.in
Page 3
CHAPTER 1. MULTILINEAR ALGEBRA
Notes:
(1) Both ( S⌦T)⌦UandS⌦(T⌦U)a r eu s u a l l yd e n o t e ds i m p l y S⌦T⌦U.
(2) higher-order products T1⌦T2⌦,···⌦Trare defined similarly.
(3) The =1(V)i sj u s tt h ed u a ls p a c e V⇤.
Note: Any vector space has a corresponding dual vector space (or dual
space) consisting of all linear forms on. , together with the vector space
structure of pointwise addition and scalar multiplication by constants.
Theorem-01: Letv1,···,vnbe a basis for V, and let '1,'2,···'nbe
the dual basis, 'i(vj)= ij. Then the set of all k fold tensor products
'i1⌦'i2⌦···⌦'ik,1i1,···,ikn
is a basis for =k(V), which therefore has dimension nk.
Proof Note that
'i1⌦'i2⌦···⌦'ik(vj1,vj2,···,vjk)= i1,j1· i2,j2··· ik,jk
=(
1i f j1=i1;···;jk=ik,
0o t h e r w i s e .
Step I: Claim: 'i1⌦'i2⌦···⌦'ikspan =k(V).
Ifw1,w2,···,wkarekvectors with wi=nP
j=1aijvjandTis in =k(V),
then
T(w1,w2,···,wk)=nX
j1,j2,···,jk=1a1,j1···· ak,jkT(vj1,vj2,···vjk)
and
'i1⌦'i2⌦···⌦'ik(w1,,w 2,···,wk)=a1,j1····ak,jk'i1⌦'i2⌦···⌦'ik(vj1,vj2,···vjk)
'i1⌦'i2⌦···⌦'ik(vj1,vj2,···vjk)=(
1i f j1=i1;···;jk=ik,
0o t h e r w i s e .
)'i1⌦'i2⌦···⌦'ik(w1,,w 2,···,wk)=a1,j1····ak,jkifj1=i1;···;jk=ik
This gives us
T(w1,w2,···,wk)=nX
i1,i2,···,ik=1T(vi1,vi2,···vik)·'i1⌦'i2⌦···⌦'ik(w1,,w 2,···,wk).
Thus T=nP
i1,i2,···,ik=1T(vi1,vi2,···vik)·'i1⌦'i2⌦···⌦'ik.
5munotes.in
Page 4
CALCULUS ON MANIFOLDS
Consequently the 'i1⌦'i2⌦···⌦'ikspan =k(V).
Step II: Claim: 'i1⌦'i2⌦···⌦'ikis linearly independent
Suppose now that there are numbers ai1,i2···iksuch that
nX
i1,i2···ikai1,i2···ik'i1⌦'i2⌦···⌦'ik=0.
Applying both sides of this equation to ( vj1,vj2,···vjk)
nX
i1,i2···ikai1,i2···ik'i1⌦'i2⌦···⌦'ik(vj1,vj2,···vjk)=0 .
This yields ai1,i2···ik=0.Thus the 'i1⌦'i2⌦···⌦'ikare lineraly
independent.
hence by step I and II, we conclude
'i1⌦'i2⌦···⌦'ik,1i1,···,ikn
is a basis for =k(V), which therefore has dimension nk.
Example: Determine which of the following are tensors on R4and
express those in terms of elementary tensors.
f(x, y, z )=3 x1y2z3 x3y1z4
g(x, y, z )=2 x1x2z3+x3y1z4
Solution:
(a)fis a 3-tensor since it is linear with respect to each variable x,y,
z. (Verify)
If!1,!2,!3,!4is the dual basis of the standard basis e1,..., e4in
R4, then
f=3!1⌦!2⌦!3 !3⌦!1⌦!4.
(b)gis not a tensor since gis not linear as
g(ax, y, z )=2 ax1ax2z3+ax3y1z4=2a2x1x2z3+ax3y1z46=ag(x, y, z ).
Example: Consider the following tensors on R4,
f(x, y, z )=2 x1y2z2-x2y3z1
g(x, y)=!2⌦!1-2!3⌦!1
6munotes.in
Page 5
CHAPTER 1. MULTILINEAR ALGEBRA
where {!1,!2,!3,!4}is the dual basis of the standard basis {e1,. . . ,
e4}forR4.W r i t e f⌦gas a linear combination of elementary 5-tensors.
Solution: (b) Since f=2!1⌦!2⌦!2-!2⌦!3⌦!1.
f⌦g
=( 2!1⌦!2⌦!2-!2⌦!3⌦!1)⌦(!2⌦!1-2!3⌦!1)
=2!1⌦!2⌦!2⌦!2⌦!1-4!1⌦!2⌦!2⌦!3⌦!1+!2⌦!3
⌦!1⌦!2⌦!1-2!2⌦!3⌦!1⌦!3⌦!1.
Dual Transformation: Iff:V!Wis a linear transformation,
a linear transformation
f⇤:=k(W)!=k(V)i sd e fi n e db y
f⇤T(v1,v2,···,vk)=T(f(v1),f(v2),···,f(vk))
forT2=k(W)a n d v1,v2,···,vk2V.
Examples:
(1) Show that f⇤(S⌦T)=f⇤S⌦f⇤T.
(2) Show that an inner product on Vto be a 2-tensor or hi2=2(Rn).
Definition: We define an inner product on Vto be a 2-tensor Tsuch
that
Tis symmetric, that is T(v,w)=T(w,v)f o r v,w2Vand
Tis positive-definite, that is T(u, v)>0i fv6=0 .
We distinguish h,ias the usual inner product on Rn.
Theorem-02: IfTis an inner product on V, there is a basis v1,v2,··
·,vnforVsuch that T(vi,vj)= ij.(Such a basis is called orthonormal
with respect to T.) Consequently there is an isomorphism f:Rn!V
such that T(f(x),f(y)) = hx, yiforx, y2Rn. In other words f⇤T=
h,i.
Proof Letw1,w2,···,wnbe any basis of V. Define
w0
1=w1,
w0
2=w2 T(w0
1,w2)
T(w0
1,w0
1)·w0
1,
w0
3=w3 T(w0
1,w3)
T(w0
1,w0
1)·w0
1 T(w0
2,w3)
T(w0
2,w0
2)·w0
2,
etc.
It is easy to check that T(w0
i,w0
j)=0i f i6=jand
w0
i6=0s ot h a t T(w0
i,w0
i)>0.
7munotes.in
Page 6
CALCULUS ON MANIFOLDS
Now define vi=w0
ip
T(w0
i,w0
i).
The isomorphism fmay be defined by f(ei)=vi.
Now Consider f⇤T(ei,ej)=T(f(ei),f(ei)) = T(vi,vj)= ij=hei,eji.
1.3 Alternating Tensor
Alternating Tensor: Ak tensor !2=k(V)i sc a l l e da l t e r n a t i n g
if
!(v1,v2,···,vi,···,vj,···,vk)= !(v1,v2,···,vj,···,vi,···,vk)8v1,v2,···,vk2V.
(In this equation viandvjare interchanged and all other v’s are left
fixed.) The set of all alternating k tensors is clearly a subspace ⇤k(V)
of=k(V).
Note: Ak tensor !2=k(V)i sc a l l e ds y m m e t r i ci f
!(v1,v2,···,vi,···,vj,···,vk)=!(v1,v2,···,vj,···,vi,···,vk)8v1,v2,···,vk2V.
Definition: IfT2=k(V), we define Alt( T)b y
Alt(T)(v1,v2,···,vk)=1
k!X