Page 1
1
1
FOURIER SERIES
Unit Structure
1.1 Periodic function
1.2 Dirichlet’s conditions
1.3 Fourier Series of periodic continuous functions
1.4 Fourier Series of even and odd functions
1.5 Fourier series of periodic function s having arbitrary period
1.1 DEFI NITIO N:P E R I O D I CF U NCTIO N:
A real or complex value dfunction fis said to be periodic with
period0T,if, x and f x nt f x n.
Example : 1)sin 2 sinxn x
2)cos 2 cosxn x
hencesinxandcosxare periodic function with period2.
TheOrthog onality Relations of Trigonometric functions :
1)0, 0 , 1 , 2 , . . . .cos cos 1,2,...
20mn m n
mx nx dx m n
mn
2)0, 1 , 2 , . . .sin sin 1, 2,...
00mn m n
mx nx dx m n
mn
3)cos sin 0, , 0,1, 2,...mx nxdx m n
4)0
2imx inxmnee d xmn
Definition : Trigonometric Series : A series of the form
0
112 2cos sin cos 2 sin 2 ......2aax b x a x b x ................ cos sin ...........nnan x b n x
where,01 122,,,,, . . . . . . . . . ,,, . . . . . . . . . .nn aa b ab abare constants is called as
trigonometric series.munotes.in
Page 2
2
1.2 DIRICHLET’S CONDITIO NS:
Iffxisaperiodic function of period2defined in the interval2CxCwhere Cis any constant then following c ondition are
known to be Dirichlet ’sconditions
i)Funct ionfxand its integrals are finite and single valued in the
interval.
ii)Functionfxhas at most finite num ber of finite discontinuities
inthe interval.
iii)Functionfxhas at most finite number of maxima and minima
in the interval.
1.3FOURIER SERIES OF PERIODIC CO NTINUOUS
FUNCTIO NS:
Definition : Iffxis a periodic function of period2define din
the interval2Cx Cand satisfies the Dirichlet ’scondition s
then, functionfxcan be represented by the trigonometric series
as 0
1cos sin2nn
naan x b n x
.This representation of a functionfxas a trig onometric series is known as Fourier series
expansion of functionfxanditsco-efficients0,,nnaabare called
Fourier coefficients .
Example :
1)tanfx xcannot be expanded as a Fourier se ries in the
interval0, 2since tan2.
2)axfx ewhere ais consta ntcan be expressed in terms of
Fourier series in any interval.
Note : The Fourier series expansion offxconverges to
12fx fx ,i.e.Right hand limit +left hand limit2at the point
of discontinuity.munotes.in
Page 3
3
Calculation of Fourier coefficient s:
Letfxbe a periodic function of period2defined in the interval2CxCsatisfy ingDirichlet’s condition st h e n itsFourier
series expansion is given by
0
1cos sin2nn
nafx a n x b n x
(1)
1)To calculate Fourier coefficient0,aintegrate equation (1)fromCto2C.
22 2 2
0
1cos sin2CC C C
nn
n CC C Cafx d x d x a n x d x b n x d x
2
0020 02C
Cafx d x a
2
01C
Caf x d x
2)To determine the Fourier coefficientnamultiply equation (1) bycosnxand the integrate fromCto2C.
2 0
1cos cos cos sin cos2nn
nafx n x n x a n xb n x n x
22 2 2
2 0
1cos cos cos sin cos2CC C C
nn
n CC C Cafx n x d x n x d x a n x d x b n x n x d x
21cosC
n
Caf x n x d x
3)To determine the Fourier coefficientnbmultiply equation (1) bysinnxand integrate fromCto2C.
22 2 2
2 0
1sin sin cos sin sin2CC C C
nn
n CC C Cafx n x d x n x d x a n x n x d x b n x
2 22
0
1sin 2 cos 1 cos
22C CC
nn
n C CCnx a nx nxad x b d xnn
21sinC
n
Cbf x n x d x
munotes.in
Page 4
4
Thus we have complete set of formulation for Fourier series
expansion of periodic functionfxof period2satisfying
Dirichlet ’scondition sas
0
1cos sin2nn
nafx a n x b n x
where
2
0
2
21
1cos
1sin 2C
C
C
n
C
C
n
Caf x d x
af x n x d x
b f x nx dx for C x C
Note:
(1) If0Cthen02xand
2
0
0
2
0
2
01
1cos
1sin 2n
naf x d x
af x n x d x
b f x nx dx for x
2)IfCthenxthen
01
1cos
1sinn
naf x d x
af x n x d x
bf x n x d x f o r x
1.4FOURIER SERIES EXPA NSIONOF EVE NANDO D D
FUNCTIO NS:
Definition :
The function fi ss a i dt ob ee v e n , if,fx f x x c x c.
The function fi ss a i dt ob eo d d , if,fx f x x c x c.munotes.in
Page 5
5
Example :cosis even function sincecos cos.sinis odd function s incesin sin.
Property :
02i f i s e v e n0i f i s o d da
a
afx d x ffx d x
f
Hence Fourier series e xpansion of even function defined in the
intervalxisgiven by
0
0
0
0
12
2cos
0
cos2n
n
n
naf x d x
af x n x d x
b
afx a n x x
This series is also called as Fourier C osine series .
Fourier Series expansion of odd function defined in the intervalxis given by
0
020, 0, sinnnaab f x n x d x
1sinn
nfx b n x x
This series is also known as Fourier S ineseries .
1.5FOURIER SERIES EXPA NSIONOF A PERIODIC
FUNCTIO NHAVI NG ARBITRARY PERIOD:
Letfxbe a periodic function of period2Ldefined in the interval2CxC Lthen substitutexzLorzLx
whenz( )CxC d s a yL
when 2z 2 2xC L C L dLThusfzis a periodic function of period2defined in the
interval2dzd.munotes.in
Page 6
6
Hence Fourier series expansion of a periodic functionfxof a
period 2L defined in the interval2Cx C Lis given by
0
1cos sin2nn
nanx nxfx a bLL
where the Fourier coefficients are given by
2
01CL
Caf x d xL
21cosCL
n
Cnxaf x d xLL
21sinCL
n
Cnxbf x d xLL
Note :
IfCLthenLxL.In this case we can verify whether the
given periodic function is given either even or odd.
Hence Fourier series e xpansion of even function defined in the
intervalLxLis given by
0
0
0
0
12
2cos
0
cos2L
L
n
n
n
naf x d xL
nxaf x d xLL
b
a nxfx a L x LL
This series is also called as Fourier Cosine series .
Fourier series expansion of odd function defined in the intervalxis given by
0
020, 0, sinL
nnnxaab f x d xL
1sinn
nnxfx b L x LL
This series is also known as Fourier Sine series .munotes.in
Page 7
7
Example s
Ex.1.Find Fourier s eries expansion offx x xand
show that2222111.....135 8.
Solution :fx x x f xfis even function.
0
0
2
0 02
22
2af x d x
xxd x
0
02cos
2cosnaf x n x d xxn x d x
0 0
0
222 sin sin
21 c o s2112111n
nxn x n xdxnn
nx
nn
nn
02sin0nbf x n x d x
0
1
2
1cos2
211cos2n
n
n
nafx a n xxn xn
Note that 0112o d dnif n is evenif n is
hence r eplace n by 2n –1,w eh a v emunotes.in
Page 8
8
2
1
2
122cos 2 12 21
2cos 2 1 2
2 210n
nxn xn
nx
nPut x
2
1
2
1
22222 c o s 002 21
22
2 21
41 1 1.......21 3 5n
nn
n
222
2
22241 1 1.......135 2111......135 8
Ex 3.Find Fourier series expansion of2fx x x.
Evaluate series atxandfind211nn
Solution :2fx x2 2fx x x f xfxis eve n function
0332
0
22
22 23323o
oaf x d x
xxd x
2
22cos
2 sin sin2
220 sinno
o o
oax n x d x
nx nxxx d xnn
xn x d xn
munotes.in
Page 9
9
22 c o s c o s
o
onx nxxd xnn n
21 22 1 s i n
1 22 10
1 4
41
0n
o
n
n
n
nnx
nn n n
nn n
nn
n
b
TheFourier Cosine series is given by
1cos sin2o
nn
nafx a n xb n x
2
2
2
141cos3n
nxn xnat x
222
2
22
1141 41133nnn
nn nn
222
2
1
2
2
142331
6n
nn
n
Ex.4.Compute Fourier seri eso faxfx ewhere a is +ve and
hence prove that
2221sinh11 2 1n
naaan a
munotes.in
Page 10
10
Solution :Letaxfx e
1
1o
axaf x d xed x
12
2
2sinh
1cosax a a
nee e
aa
aa
af x n x d x
Let1cosax
naI e n x d x
1cos sin
1cos cos sinax ax
aa
axeenx nx n dxaa
ee nnn n x e d xaa a
(by LI ATE )
111 s i n c o saa a x a x
nnee n eenxa n nxaa a a a
2
2
2
2
2
2111 s i n c o s
1 1cos
1 1cos
1
1aa a x a x
nn
n
aa a x
n
aa a x
n
aa
nee n eenx n nxaa a a a
nnee e n x d xaa a
nee e n x d xaa
nIe e Iaa
nIIaa
22
21aa
n
aaee
anIe eaa
2
naa221n
a an
22 2212 1sinhaa
nn
aaee
a aee aan an
munotes.in
Page 11
11
1sin
1sinn
ax
nbf x n x d xbe n x d x
(by LI ATE)
1sin cos .
10c o s .
1cosax ax
n
ax
axeebn x n x n d xaa
nen x n d xa
nen x d xa
n
a
a
22
11
22 221
12 1sinhn
aa
nn
aaee
an
nnee aan an
Thus the F ourier series expansion offisgiven by
1
1
22 22
1
22
1
2
22
1cos sin2
2 1 sinh 2 1 sinh sinhcos sin0
21 sinh1s i n h
1 sinh11 2
sin1o
nn
n
nn
ax
n
n
n
n
nafx a n xb n x
aa n a aen x n xa an an
at x
a aaa an
a a
a an
2
22
1h12 1n
naa
a an
Hence proved
Ex. 6. Show that 22220
11
2nn
nafx d x a b
where&nnabare Fourier coefficients o f Fourier series expansion of
periodic function f defined in,
(This is known as Parseval’s Identity )munotes.in
Page 12
12
Solution: TheFourier series expansion of a periodic functionfxof period2define din the intervalxsatisfying Dirichlet’s
conditions is given by
0
1cos sin2nn
nafx a n xb n x
On squaring both sides we get
2
22 2 2 2 0
11
00
11 1cos sin4
cos sin sinnn
nn
nn n n
nn nafx a n x b n xaa n x ab n x ab n x c o n x
Assuming term by term integration on R.H.S. of above equation is
permissible.
Integrating both side of above equation with the limitto.
2222 0
1
22
0
11
0
11cos4
sin cos
sin 2 sin cosn
n
nn
nn
nn n
nnafx d x d x a n x d x
bn x d x a a n x d xab n x d x ab n x n xd x
Using orthogo nality relations we get
22220
1 2nnnafx d x a b
22220
11
2nn
nafx d x a b
This relation is known as Parseval’s Identity .
munotes.in
Page 13
13
2
BASIC PROPERTIES OF FOURIER SERIES
Unit Structure
2.1 Complex form of Fourier series
2.2 Properties of Fourier Coefficient
2.3 Riemann Lebes gue Lemma
2.4 Good kernel s
2.1COMPLEX FORM OF FOURIER SERIES :
Letfxbe a periodic function of period2define din the interval2CxCthen its Fourier series expansion is given by
0
1cos sin2nn
nafx a n x b n x
We have cos2iiee
sin2iieei
0
1 22 2inx inx inx inxnn
na ee eefx a bi
0
1 22 2inx inxnn nn
na a ib a ibfx e e
Setting002aC;22nn nnnnai b ai bCC
0
1inx inxnn
nfx C C e Ce
inxn
nfx C e
munotes.in
Page 14
14
This is Complex form of Fourier series where,nCisFourier
coefficient which is given by,2nnnai bC.
Using value of Fourier coefficient&nnabwe can simplify fornCas.
2211cos sin2CC
n
CCiCf x n x d x f x n x d x
21cos sin2C
n
CCf x n x i n x d x
21
2C
inx
n
CCf x e d x
This is general formula for Fourier coefficient in the complex
form .
Note :
1)The Fourier series coefficientsnCin complex form is also
denoted byˆfn.
i.e. 21ˆ
2C
inx
n
Cfn C fx e d x
2)Iffxis a periodic function of period2define din the
intervalxthen 1ˆ
2inx
nfn C fx e d x
.
3)We have2nnnai bCand2nnnai bC
2nn nnn nnn no
oCC aCC i b
bi C C
aC
4)Similarly, we can find the Fourier series expansion of aperiodic
functionfxof arbitrar yperiod 2L define din the interval2CxC Lin complex form of as
in xLn
nfx C e
munotes.in
Page 15
15
where,
21ˆ
2CL in x
L
n
Cfn C fx e d xL
Ex.1.Find complex form of Fourier series ofgSolution :We have Fourier coeffi cient in Complex Fourier series
expansion as
221
2
1
2
1
2
11
2
11 1cos2in
n
in
in in
in in
in
in in
in inCg e d
ed
eedin in
eeein in in
eeee n iin in n n
1
1sin cos sin
1 112
1 122
1n
n
n
nnn i n
in in
inin
11in
n
n
ninngC eein
0At nTo find the value0Cconsider Fourier coefficient in comple xform
12in
nCg e d
Put n012Cg d
…….. { since gi so d df u n c t i o n } .munotes.in
Page 16
16
Thus complex form of Fourier series of a given function is given by
11n in
n
noein
ga t n
We have
1100ninn
noegin
ga t n
Since 11nnas n vari es from -veto+ve integer.
Hence we can combine nthterm & ( -nth)t e r ma s .
1
1 11n in in in
n e eein in in
1
1
11
1
1cosn
in in
n
in in
nie ien
ie en
inn
sin cosin n
1
1
1
1sin
12 sin
21sin
21sin nn
n
n
nin
iinn
nn
gn
Note : The functiongis odd function. Hence we
can expand this function in terms of Fourier S ine series.
Ex.2.Show that 2 21
2n
nCf x d x
wherenCis complex Fourier coefficient of Fourier series expansion of
periodic function f defined in,
(This relation is known as Bessel’s Inequality .)munotes.in
Page 17
17
Solution :The complex form of Fourier series expansion of periodic
functionfxis given by inxn
nfx C e
.
We have property of the complex number2,zz z zConsider,
2NN Ninx inx inxnnn
NN Nfx C e fx C e fx Ce
NNim nxinx inx
nnnm
Nm n Nfxfx C fx e Cfx e C Ce
Divide both side of above equation by2and integrate within limittoalso using
11&22inx inxnnfx e d x C fx e d x C
and
0 1
1 2im nxmned xmn
We obtains
2
2
2222 211
22
122
1
2N
inx
n
N
NN
nn nnn n
NN
NNnnNN
N
n
Nfx C e d x fx d x
CC CC CCfx d x C Cfx d x C
2 2
2 21
2
1
2N
n
N
n
nCf x d xLetting N we getCf x d x
wherenCis complex Fourier coefficient.
This relation is known as Bessel’s Inequality .munotes.in
Page 18
18
Note :
1)22 20
111
42nn
naa b
2 21
2n
nCf x d x
.
2)From above Bessel’s Inequality the series222,nnnab Care convergent.
2.2PROPERTIES OF FOURIER COEFFICIE NT
Thefollowing statements are equivalent
1)2Perio dicfunction on Rlike exponential function.
2)Function defined on the interval of length2.
3)Function defined on the unit circle.
Since a point on the unit circle takes the formie,is real and
unique upto integer multiple of2.IfFis a function on the circle
then we may define for each real number()ifF e
Observe that2( )fffora l l.
Thus fis periodic of period2.The integrability, continuity and
other smoothness properties of Fare determined by those of f.
Definition : The Fourier coefficient of an integrable period ic
functionfare the complex numberˆfndefine dby the integral.
1,2inxfn fx e d x n z
The1Lnorm of anintegrable periodic functionfis given by
112ff x d x
.
The2Lnorm of square integrable periodic functionfis given by
122
21
2ff x d x
.
Properties of Fourier Coefficient :
Theor em1:Suppose thatfis an integrable periodic function then
1ˆ ,fn f n Z.munotes.in
Page 19
19
Proof:
We have,
1ˆ2inxfn fx e d x
Taking mod on both sides
1ˆ
2
1ˆ
2
12inx
inx
inxfn fx e d xfn fx e d x f ffxe d x
since
22
1
1cos sin cos sin 11ˆ
2
ˆinxen x i n x n x n x
fn fxd x f
fn f n Z
Theorem 2:Translation Property :S u p p o s et h a tfis an
integrable periodic function. Given a in R.Letaftranslate functionfasafx f xathenˆ ˆ.ina
afn e f n nZProof : We have,
1ˆ2inxfn fx e d x
1ˆ
2
1ˆ
2inx
aa
inx
aafn fx e d xfn f xa e d x fx f xa
Putxa y xaydx dywhen,xy awhen,xy a
1ˆ
2
2ain a y
aa
inaainy
afn fy e d yefy e d y
munotes.in
Page 20
20
Sincefis periodic function of period2.
1ˆ
2
ˆ ˆina iny
a
ina
aafn e f y e d yfn e fn
Theorem 3:Suppose thatfis continuous function with continuous
derivative'fthen'ˆ ˆ()fn i n fn n.
Proof : We have,
1ˆ2inxfn fx e d x
On integrating by part s
' 1ˆ
2inx inxfx e efn f x d xin in
Sincefis periodic function of period2,w eh a v e2 ff f
The 1stterm inabove equation vanish es
'
'
'' '
'11ˆ
2
11
2
11ˆ ˆ}2
ˆ ˆinx
inx
inxfn f x e d xin
fx e d xinfn fn fx e d xin
fn i n f n n
Notation :
21ˆfn Onasnmeans L.H.S. is bounded by constant
multiple of R.H.S. i.e. there exist constant C>0such that
2ˆCfn
nlargen.
In general,fx O g xasxameans for some +ve constant C,fx C g xasxa.
Note :1fx O meansfis bounded function.munotes.in
Page 21
21
Theorem 4:Suppose that functionfis twicecontinu ously
differentiable function defined on the circle then 21ˆfn Onas
n.So that Fourier series offconverges absolutely &
uniformly tof.
Proof : We have
1ˆ2inxfn fx e d x
Integrating R.H.S. by part
'
'1ˆ
2
ˆ2inx inx
inx inxeefn fx f x d xin in
eefn fx f x d xin in
Sincefis periodic function with period2.1stterm of R.H.S.
Vanishes
' 1ˆ2inxfn e f x d xin
Once again integrating by parts,
'' '
'' 'ˆ2
ˆ2inx inx
inx inxeein f n f x f x dxin in
eefn f x f x d xin in
Since'fis periodic and cos sin cos sin 0inx in inee e n i n n i n
2' '
2' 'ˆ2
ˆ2inx
inxnfn f x e d xnfn f x e d x
2' 'ˆ21inx inxnf n fx e d x e
2' 'ˆ2.nf n fx d xC
.
where Ci sac o n s tantandindependent of n. and s incefis twice
continuously differentiable,''fis bounded function .
Setting2CBwhere, B is bound of''fmunotes.in
Page 22
22
2
2ˆ22ˆnf n BBfn
n
21ˆfn onasn2.3THE RIEMA NN-LEBESGUE LEMMA :
Statement : Iffis integrable function defined on a circle thenˆ0fnasn.
OR
Iffis integrable periodic function of period2thenˆlim 0nfn
.
Proof : Since for any0, we can choose a continuous periodic
function g with fg.
Since ˆ ,fn f n Zˆˆfn g n f g(1)
i.e.theFourier coefficient of fu nctionfand g differ by less than.
So thatˆfnare eventually less thanin modulus if0gnas
n.
If gis continuous periodic function and athen we haveagx g x aˆ ˆina
agn e g n nZ(2)
Choose an ˆ ˆinn
agn e g nˆ ˆ1agn g n (3)
Weh a v e ,
11ˆ2gn g gx d x
(4)munotes.in
Page 23
23
Now consider,ˆˆˆ 2gn gn gnˆˆagn g n (byequation (3))
12agx g x d x
(byequation (4))
12gx gx a d x
Putan 1ˆ22gn gx g x d xn
As0nanhence, 0gx gxnˆ20gn asnˆ0gnasnBy (1), ˆ0fnasnˆlim 0nfn
hence proof.
2.4GOOD KER NELS :
Definition : A family of Kernels 1nnKxdefined on the circle is
said to be fa mily of good Kernel if it sa tisfies the following property
1)for all 11, 12nnK X d x
2)There exist M > 0 Such that for1nnKx d xM
3)for every0,n
xKx d x oasnConvolution : Letfandgbe2periodic integrable functions then
the convolution of functionfand g on interval,is denoted
anddefined asmunotes.in
Page 24
24
12fgx f y g xy d y
OR
12fgx f xy g y d y
Note :fg gfTheorem : Let1nnKbe a family of Good Kernels andfis an
integrable periodic function defined on the circle thenlimnnfK x f xwhenever,fis continuous atx.
Iffis continuous everywhere then the above limit is uniform.
Proof : If0andfis continuous atxthen we can choose,So
that y.fx y fx(1)
Consider,
1*2nnfK x f x Ky f xy d y f x
(Definition of convolution )
AsnKis a good Kernel 112nKy d y
11*22
1
2
1*2
1
2nn n
n
nn
nfK x f x Ky f xy d y f x Ky d yKy f xy f xd y
fK x f x Ky f xy f x d y
Kyf xy f x d y
1
2
1
2n
y
n
yKyf xy f x d y
Kyf xy f x d y
munotes.in
Page 25
25
Note that
&yy
yy y 2
22nn n
yyBfK x f x Ky d y Ky d y (2)
Clearly, 1stterm is bounded by2M(by 2ndproperty of good
Kernel) and b y3rdproperty of Good Kernel for large value of n,2nd
term will be less than.
Hence for some constant C we have,nfK x f x CnfK x f x asn.
Iffis continuous everywhere then is it uniform lycontinuous.
Hence,can be chosen independent of x which proves desired
conclusion.
nfK f
i.e.limnnfK x f x
munotes.in
Page 26
26
3
DIRICHLET KER NEL
Unit Structure
3.1 Dirich let’s Kernel
3.2 Properties of Dirich let’s Kernel
3.3 Diric hlet Theorem on point wise convergence of Fourier
series
3.1DIRICHLET’S KER NEL :
We have complex form of a Fourier series expansion of a periodic
functionfof a period2defined on,.
ˆinnff n e
(1)
TheNthpartial sum of Fourier series expansion of a series (1) is
denoted and defined as,
ˆNinN
nNSf fn e
(2)
We have Fourier series coefficient.
1ˆ2infn f e d
(3)
Using equation (3) in equation (2) we have,
()1
2
1
2
1
2N
in in
N
nN
Nin inN
N
in
NNSf f e d efe defe d
1
2N
in
N
NSf f e d
munotes.in
Page 27
27
Put,ddWhen , When , 1
2N
in
N
NSf f e d
Sincefis periodic function of period2 1
2N
in
N
NSf f e d
12NNSf f D d
(4)
where NinN
NDe(5)
and it is known as NthDirichlet Kernel .
Equation (4) represents Nthpartial sum of Fourier series in terms of
Dirichlet Kernel.
3.2PROPE RTIES OF DIRICHLET’S KER NEL :
Theorem 1:The NthDirichlets’s kernel is given by
1sin2
1sin2N
in
N
NN
De
Proof : We have
NinN
NDe
(1 ) (2 ) 0 2
2( ) ( 2 ) 2
2
0
2
0.... .....
1. . . . . . . . . . . .iN i N i N i i iN
N
iN i i iN nH i i N iN
N
iN in
n
NniN i
nDe ee e e e e
ee e e e e e
ee
ee
The above series is a geometric series with first term a=1 and
common ratio,r 1ire.
we have
1
011K K
n
nrrr
munotes.in
Page 28
28
21
111
1Ni
iN
N i
iN iN
N ie
Dee
eeDe
Multiply Numerator as well as Denominator by/2ie
(1 ) / 2/211
22
/2 /21iN i N i
N ii
iN iN
iiee eDee
eeee
11
22
/2 /22
2
1sin2... sin1 2sin2iN iN
N ii
ii
Nee
iDee
i
NeeDi
Theorem 2:Suppose th atfis periodic and integrable then nth
partial sum of Fourier series expansion offis given by
1122NN NSf D x y f y d y D y f x y d y
i.e.NN NSf x D f x f D x
Proof : TheNthpartial sum of Fourie r series is given by
ˆNinxN
nNSf x f n e (1)
whereˆfnis aFourier coefficient given by
12inyfn fy e d y
(2)
Put (2) in (1) we get
1
2Niny inxN
NSf x f y ed y e
1
2N
in x y
N
NSf x f y e d y
(3)munotes.in
Page 29
29
Putxyzdy dzWhen,yz x When,yz x 1
2
1
2Nxinz
NxN
Nxinz
xNSf x f x z e d zfx z e d z
Sincefis periodic function of period2defined on the interval,
1
2N
inz
N
NSfx f x z e d z
1
2N
iny
N
NSf x f x y e d y
(4)
Put (3) and(4) we get,
11
22NN
in x y iny
N
NNSf x f y e d y f x y e d y
Since Nin xN
NDx e
11
22
1122NN
in x y in y
N
NN N
NNSfx fy e d y fx y e d yfy D x y d y fx y D y d y
By definition of convolution,NN NSf x f D x D f x
Theorem 3: 112NDd
where,NDNthDirich let Kernel.
Proof : We have NthDirichilet Kernel
cos sinN
in
N
nN
N
N
nNDeDn i n
munotes.in
Page 30
30
cos 0 sin 0 cos si nNDi i cos si n i cos 2 sin 2 i
cos 2 sin i 2. . . . . . . . .
cos sinNi N
cos si n Ni
112 c o s 2 c o s 2 . . . . .2 c o s
12 c o sN
N
N
nN
DN
Dn
On Integrating both side fromto
112 c o s22 0 . . . . . c o s 0N
N
n
NDd d n d
Dd n d
112NDd
Theorem 4: logNDx d xc N
asNwhere, C is any
constant andNDxis NthDirichlet Kerne l
Proof : Step (1)
We have 112ff x d x
Similarly 112NNDx Dx d x
SinceNDxis even ,
122NNoDx Dx d x
We have, 1sin21sin2NNxDx
x
11sin1 2
1sin2NoNxDx d xx
Put2xy2dx dyWhen0, 0xymunotes.in
Page 31
31
When ,2xy
2
11sin 21 22sinNoNyDx d yy
2sin 2 1 2
sinoNydyy
(1)
Sin y can be approximated as y
i.e.sinyy2
1sin 2 1 21NoNyDx d y oy
Step (2) :
Put21Ny t21Nd y d tWhen0, 0ytWhen21,2 2Nyt
21
2
1
0
21
2
1
0
112 2
1
01
2sin
2(1)21 21
2s i n(1)
2 sin(1)N
N
N
N
K
N
N
KKt
dt tDx oNN
tDx d t ot
tDx d t ot
Step (3) :
Put2KtSdt dsWhen1,02tK S When 11,22tK Smunotes.in
Page 32
32
2 2
1
00sin2 2(1)2N
N
KKSDx d s oKS
(2)
We have,sin sin sinsin2cos sin cos2si f K i s e v e n S n SKS ns if K is odd S
sin
cosKs if K is evenuSsi fK i s o d d
2 2
1
002(1)2N
K
N
KuSDx d s oKS
(3)
The value2KScan be approximated to2K.
Since11022KKS
2222022 220
24KKSS
KK KKSS
S
KS K
The maximum value of224
2SK
K is2 2
2SK K
22
2042SK SK K
Also211KK
is convergent and Hence bounded.munotes.in
Page 33
33
2 2
1
002(1)2N
K
N
KuSDx d s oKS
This equation can be written as
2 2
1
0 021(1)2N
NK
KDx uS d s oK
(4)
3)Step (4) :
Consider, 22sin 1KoouS d s s d s if K is even and
22cos 1KoouS d s s d s if K is odd use this value in (4).
2
1
0
2
2 1
021(1) (1)2
41(1)N
N
K
N
N
KDx O
K
Dx OK
Now we have,2
01logN
KNK
2 14log (1)NDx N O By using definition of1Lnom
214log (1)2NDx d x N O
28log (1)logN
NDx d x N ODx d x C N
Theorem 5:Dirichlet Kernel is not good Kernel.
Proof: By above property of Dirichlet Kernel, the 2ndproperty of
good Kernel fails and hence Dirichlet Kernel is not good Kern el.
3.3DIRICHLET’S THEOREM :
Statement : TheFourier series of real continuous periodic functionfwhich has only finite number of relative maxima and minima
converges everywhere tof(and hence conver ges uniformly)munotes.in
Page 34
34
OR
Suppose thatfis an integrable periodic function that is
differentiable at0xxthen00limNNSfx fx.
Proof : We have Nthpartial sum of integrable periodic functionfas
12NNSfx fx yD y d y
at0xx 0012NNSfx fx yD y d y
Consider,
00 0 012NNSfx fx fx yD y d y fx
.
By property of Dirichlet Kernel,
00 0 011()22NN NSfx fx fx yD y d y fxD y d y
112NDy d y
00
00
0011
22
1
2
12NN
NN
Nfx y D y d y D yfxd yfx y D y D yfx d y
fx y fx D y d y
as again by property of Dirichlet Kernel .
00 0 01sin1 2
1 2sin2
11sin22NNySfx fx fx yfx d yy
Ny g y d y
where, 00sin2fx y fxgyymunotes.in
Page 35
35
i.e. 00 22sin2yfx y fxgyy y clearly,1sin2Ny isbounded near zero and hence i ntegrabl eo n,.Also 2ndfactorgyis bounded and hence integrable on, {sincefisdiff at0x&
0sin2lim 12yy
y }
Hence it f ollows that000NSfx fxasN00lim ( )NNSfx fx
Ex:Iffis2periodic and piecewise smooth onthen show that
1lim2NNSf f f
and hence show thatlimNNSf ffor everywherefis continuous.
Solution :We have,
Step (1) :
...... 2o
NNDd Dd
01122NDd
022Nff
Dd
(1)
Also N
oDd22N
off
Dd (2)
Step (2) :
We have Nthpartial sum of Fourier series
1
2NNSf f D d
0
011
22NNfD d fD d
munotes.in
Page 36
36
Consider,
0
01
2
11
22N
NNSf f ffD d fD d
0
01
2NNffDd Dd
1122o
NNff D d ff D d
(4)
Step 3 :
We have,
11iN iN
N ieeDeConsider,
1 iN iNge e d
where 01
1i
iff
eg
ff
e
g is well define d function defined on,andalso g is smooth
except at0Also,0ff at0.
Hence,gis in00form at0.By applying1LHospital rule,
00
'
0lim lim1
limi
iff
ge
f fie i
Similarly,
00
' 1
0lim lim1
limi
iff
ge
f foie i
Thus R.H.S. & L.H.S. limit exist.
Hence g is piecewise continuous on,.munotes.in
Page 37
37
Step (4) : Using equation (4) we have,
111
2
11
22N
oiN iN iN iN
oSf f f
ge e d ge e
1 12iN iNge e d
(5)
We have, Fourier coefficient 1ˆ2infn g e d
ByRiemann Lebesque lemma ,ˆfn oasn.
Consider,
1
11ˆ ˆ12
1
2
1lim2iN iN
iN iN
NNge e d f N f Nge e d o a s N
Sf f f
whenever iffis continuous atthenlimNNSf=f
munotes.in
Page 38
38
4
FEJER KER NEL
Unit Structure
4.1 Cesaro mean and Cesaro summation
4.2 Fejer’s kernel
4.3 Properties of Fejer’s kernel
4.4 Fejer’s theorem
4.5 Uniqueness theorem
4.6 Weirstrass approximation Theorems
4.1CESARO MEA NAND CESARO SUMMATIO N:
Let012
0...... .....KKCCC C
be a series of complex numbers.
Define nthpartial sum by
0nnkKSC.
This series converges to S if limNNSS.
The average of 1stN partial sum is denoted and defined by012 1.....N
NSSS SN
i.e.1
01NNnnSN
is called NthCesaro Mean of the series
0kKC
.
IfNconverges toasNthen we say thatnNC
isCesaro
summable to.
Example : Consider
0111111. . . . . 1KK
Partial sum of the sequence11111 . . . . . . . .is1, 0,1, 0, .......which has no limit since partial sum fluctuate between 0 and 1.
So average value10 122N.
Therefore, above series is Cesaro summable to12.munotes.in
Page 39
39
4.2FEJER’S KER NEL
TheNthCesaro mean of Fourier series is given by
01 1 ....N
NSf x Sf x S f xfxN
Weh a v e ,Nthpartial sum of Fourier series given byNNSf f D.
01 1
01 1......
........N
N
N
N
NNfDx fD x fD xfxN
fD xD x D x
fxN
fx f F x
where 01 1 .........N
NDx Dx D xFxN
i.e. 1
01N
Nn
nFx D xN
is called theNthFejer’s kernel .
4.3PROPERTIES OF FEJER’S KER NEL
Theorem 1:The Nthis Fejer’s kernel is given by
2
2sin12sin2NNxFxxNProof : We have,
1
01NNnnFx D xN
1
01sin1 2
1sin2N
nnxN x
11
22 1
0
1 22
0
11
22
001
1 2sin2
1.
1 2sin2
1
12s i n2in x in x
N
n
ix ix
inx inx N
N
n
ix ixNNinx inxnnee
iNx
ee e eFxiNx
eee e
iN x
munotes.in
Page 40
40
Both of above series are in geometric progressive
for 1stseries, Common ratioixre,
for 2ndseries, Common ratioixre
Note that,1rUsing1
011K K
n
nrrr
22111
1 112s i n2NNix ixix ix
N ix ixee
Fx e eeeiN x
22
22 22
22 2211 1
2 sin 112
11 1
2 sin2
11 1
2 sin2iNx iNx
ix ix
ix ix
iNx iNx
ix ix ix ix
iNx iNx
ix ix ix ixee
xiN ee e e
ee
xiN ee e e
ee
xiN ee ee
2
2 2122 sin sin22
122 sin2iNx iNx
iNx iNxee
xxiN
eex iN
222
2 21
2 sin2iNx iNx
NFx e ex iN 222
21
2 sin2iNx iNx
ee
x i N 2
2sin12sin2NNxFxxNmunotes.in
Page 41
41
Theorem 2:The NthCesaro sum of Fourier series of continuous
periodic functionfis given by
1122NN Nfx F x yfy d y F yfx y d y
where,NFis NthFejer’s kernel.
i.e.NN Nfx F f x f F x
Proof : We have Nthpartial sum of Fourier series is given by
1122NN NSfx D x yfy d y D yfx y d y
where,NDis NthDirichlet Kernel.
Taking summation on both side.
11
00
1
01
2
1
2NN
nn
nn
N
n
nSf x D x yf yd yDy f xy d y
11 1
00 011
22NN N
nn n
nn nSf x D x y f yd y D y f x yd y
We have NthCesaro sum of Fourier seriesf1
01NNnnfSN
and also
we have, Fejer’s Kernel 1
01N
Nn
nFx D xN
.
1
2
1
2NN
NNf x N F x y f y d yNF y f x y d y
1122NN Nfx F x yfy d y F yfx y d y
ThusNN Nfx F fx f F x
Theorem 3: 112NFx d x
whereNFxisNthis Fejer’s kernel
Proof : NthFejer’s Kernel is given by, 1
01N
Nn
nFx D xN
.
Now integrating using limittomunotes.in
Page 42
42
1
0
1
0
1
01
1
1122 2N
Nn
n
N
n
n
N
N
nFx d x D x d xN
Dx d xN
Fx d x NNN
12NFx d x
Hence proved,
Theorem 4:lim 0NN
xFx d x
if0.
Proof : We have, NthFejer Kernel
2
2sin2sin2NNxFxxN
The maximum value of2sin2xis one.
Also,2sin2xincreases as x goes away from the origin in,.
Hence,
21
sin2NFx
N
where x0N
xFx d x
asN.
Theorem 5:Fejer KernelNFxis good kernel
Proof : Since we have
1)0NFx x2) 112NFx d x
3) Msuch that NFx d xM
4)for every0, 0N
xFx d x
asNThus Fejer ’sKernel is good kernel .munotes.in
Page 43
43
4.4FEJER’S THEOREM :
Theorem: Iffis integrable on the circle then Fourier Series offisCesaro summable tofat every point of continuity off.
Moreover, if is continuous on the circle then Fourier series offis
uniformly Cesaro summable tofProof :
Step (1) :Iffis integrable function defined on the circle then it can
be approximated as a Fourier seriesinxn
nf(x) a e
The NthCesar omean of Fourier Series is given by
N1
Nn
n01f(x) S f(x)N
Where,NSf ( x )isthNPartial sum of Fourier series .thNCesaro mean of Fourier series offcan be written as
convolution
NNf(x) ( f*F )(x)where,NFisthNFejer kernel
Step(2) :
We have property of good kernel i.e. letnn1Kbe a family of good
kernel andfis integrable function defined on the circle then
nnlim ( f * )( x ) f ( x )
Whenever,fis continuous atx.
Moreover, iffis continuous everywhere then above limit is
uniform.
Step(3): We know thatthNFejer kern elNFis good kernelBy propert ym e n t i o ni n step ( 2) we can write
NN
NNlim ( f * F )( x ) f ( x )lim f ( x ) f ( x )
Hence, Fourier series of an integrable function defined on the circle
isCesaro summable tofat every point of continuity Also, by
step(2), iffis continuous on the circle then the Fourier series offis uniformly Cesaro summable tof.munotes.in
Page 44
44
Fejer’s Theorem: Alter native Form
Alternatively the statement of Fejers theorem may be written as
Statement : Iffis continuous and periodic then averagesNfof
partial sum of Fourier series offconve rges uniformly tofas
N.
i.e.lim ( ) ( )NNfx fx
Proof : Claim :NffasNi.e.lim ( ) ( )NNfx fx
We have NthCesaro mean of Fourier se ries offis given by,
12NNfx F yfx y d y
Consider,
1
22
11
22
12NN N
NN
Nfxfx fx F yfx y d y F y d yFy f xy d y Fy f x d yFyf xy f xd y
1
2NN
yfx fx F y fx y fx d y
1
2N
yFyf xy f xd y (1)
For any choice ofsuch t hato.By the properties of Fejer
Kernel, the 1stintegral,
1
2N
yFy f xy f xd y has modulus bounded by12sup
/ fx y fx y (2)
A continuous periodic function is uniformly con tinuous so giveno, we fixso small so that the bound of equation (2) is2N.
The modulus of 2ndintegral 1
2N
yFy f xy f xd y is
bounded by 12s u p2N
yfy F y d y (3)munotes.in
Page 45
45
For large N, the bound of equation (3) is2.
Sincelim 0NN
yFy d y
Now using equation (1), (2) and(3),
22Nfx fxasNlimNNfx fx
Alternative Pr oof of Fejer’s Theorem
Step 1: We have theorem
Let1nnKbe a family of Good Kernels andfis an integrable
periodic function defined on the circle thenlimnnfK x f xwhenever,fis continuous atx.
Iffis continuous everywhere then the above limit is uniform.
Step 2: We know that Fejer Kernel is a good kernel and hence by
above theorem, we havelimnnfF x f xwhenever,fis continuous atx.
Iffis continuous everywhere then the above limit is uniform.
Step 3: We also know that,NN Nfx F fx f F x
Hence by abov es t e p2 ,w eh a v elimNnfx fx
whenever,fis continuous atx.
Iffis continuous everywhere then the above limit is uniform.
4.5UNIQUE NESS OF FOURIER SERIES
Theorem : Iffis integrable periodic function defined on the circle
andˆ0fn nthen0fat all points of continuity of a
functionf.munotes.in
Page 46
46
Proof : Wehave Nthpartial sum of Fourier series offˆNinxN
nNSfx fn e
Sinceˆ0fn n0NSfx n (1)
i.e. all partial sum of Fourier series of functionfare zero
Also, we have NthCesaro mean of Fourier series of functionf.
1
01N
Nn
nfx S fxN
By equation (1)0Nfx n(2)
i.e. NthCesaro mean of Fourier series offare zero we have,
property of Fejer Kernel.*NNfx f F x
By equation (2) *000N
NfFx
fx F
Uniqueness ofFourier Series :
Since Fourier series of a continuous periodic functionfconverges
tof, the functionfis uniquely determined by its Fourier
coefficient s.
Iffandgaretwo functions having same Fourier coefficient sthen
functionsfand g a re necessarily equal i.e. iff(n) g(n)thenfg 0fg 0{By above then i.e. iff(n) 0 f 0}fg4.6THE WEIERSTRASS APPROXIMATIO N
THEOREM :
Statem ent :
Any continuous periodic functionfcan be approximated by
trigonometric polynomial.
ORmunotes.in
Page 47
47
Iffis continuous function defined on the inter val,withf( ) f( )and0then there exist trigonometric polynomial P
such that f(x) p (x) , xProof:
By Fejer’s Theorem, iffis continuous and periodic then averages
Nfof partial sum of Fourier series of functionfconverges
uniformly tof.
i.e.Nf(x) f(x)for 0xHere,Nf(x)itselfproves existence of trigonometric polynomialP( x ).
munotes.in
Page 48
48
5
POISSO NKER NEL
Unit Structure
5.1 Abel mean and Abel summation
5.2 Poisson Kernel
5.3 Properties of Poisson Kernel
5.4 Abel sum mability of Fourier series
5.1 ABEL MEA NAND SUMMATIO N:
Definition : As e r i e so fc omplex numberkk0C
is said to be Abel
Summable to S if for every0r1the seriesA( r )kk
k0Cr
is
convergent and if
r1lim A( r ) S.T h eq u a n t i t yA( r )iscalled Abel
mean of the series .
Example :consider the Series
1-2+3-4+5----------k
k0(1 ) ( k 1 )
kkk0
2A( x ) ( 1 ) ( k 1 ) r1
(1 r)
r11lim A( r )4Hence Series 1 -2+3-4+5-6+........ is Abel summable to14.
5.2 POISSO NKER NEL
ThePoisson kernel is denoted and defined as ninr
nPr e
Definition :Let us define Abel Mean of the Fourier seriesinn
nf( ) a e
munotes.in
Page 49
49
where,nais Complex Four ier coefficient, is given by
n in
rn
nAf ( ) r ae
Since ntakes positive andnegative integer value, we considernhere. Herefis integrable andnaac o m p l e x Fourier c oefficient
which is uniformly bounded. Hence SeriesrAf ( )converges
absolutely and uniformly for eachr,0r1.
Theorem: The Abel Mean can be written as convolution of periodic
integrab le function f and the Poisson kernelrPasrrAf f PProof : We have,
n in
rn
nAf ( ) r a e
where, complex Fourier coefficient
in
n1af ( n ) f ( ) ed2
nin inr
n1Af ( ) r f ( ) e d e2
n in
n
n in ( )
n
n in ( )
n1rf ( ) e d2
1rf ( ) e d2
1f( ) r e d2
since weh a v e , Poisson Kernelninr
nP( ) r e
rr
rr r1Af ( ) f ( ) P ( ) d2
Af ( ) f P P f
5.3PROPERTIES OF POISSO NKER NEL
Theorem 1: If0r1then Poisson kernel2
r21rP( )12 r c o s rmunotes.in
Page 50
50
Proof: We have byd e f i n i t ion of poisson kernel
ninr
nP( ) r eni n n i nr
nn 1P( ) r e r e (1)
Both of above Series are geometric Series .
For 1stSeries,
First term =a= 1 and Common Ratio = R =ireiiR re r e 1 Sincei0r1 r e 1For 2ndSeries,
First team =iar eandCommon ratio =iRr e
iiRr e r e We have sum of infinite term of geometric Series whose 1stteami sa
and common ratio is Ris given byaS1R,providedR1.
Use this in equation (1)
i
rii1r eP( )1r e 1r e ii 2
ii 2
2
ii21r e r e r
1r e r e r
1r
ee12 r r2
221r12 r c o s riieecos2 Theorem 2:The Poisson kernelrP0Proof:
2
r 21rP( ) 0 r 112 r c o s r Since20r1 1 r 0Also1 cos 1.Hence in any case
212 r c o s r 0Hence0rP.munotes.in
Page 51
51
Theorem 3:r1P( )d 12
whererPis the Poisson kernel
Proof:
2
r21rP( )12 r c o s r2
r 21rP( ) d d12 r c o s r
SincerP( )is even function
2
r 2
01rP( )d 2 d12 r c o s r
Also we can wri te
2 2
r 2
011 rP( ) d 2 d21 2 r c o s r
2 2
2
01rd1 )12 r c o s r
By applying contour integration Method
PutiZe z1idz ie d i z ddzdiz
ii1zeezcos22
Put in (1)
2
r
c
21r d zIP ( ) d1izzz12 r r2
2
2c1r 1.dz1 iz1rz rz
2
22
c(1 r )z 1.dziz zr z 1 r z munotes.in
Page 52
52
2
22
c11 rdzizr z rr z
2
22
c11 rId z ( 2 )ir z ( 1 r ) z r
To Find poles and residues :
Let221rz r z r o
22
1
1rz z r z r o
rz r z r z o
rz r z ozr a n d z a r e p o l e sr
Since 1,zr z rlies inside circle1Cz.
11,zrso1zrlies outside circle C.
By Cauchy Residue theorem,
2112 lim1zrrIi z riz r r z
2211212riir
From (1), rP2d
112rPd
Theorem 4:For0, 0 1rPd a s r
Proof :
2
21,112 c o srrPrrr 2 212 c o s 1 21c o srrr r
As1r,212 c o s 2 1c o srr munotes.in
Page 53
53
which is bounded ascosisbounded.
Hence2r1rP( )C(asapproaches towards,cosdecreases)
2
r1rP( )d 0 a s r 1C
Theorem 5:ThePoisson Kernel is agood ke rnel.
Proof: Since we have proved
1)rP( ) 02)r1P( ) d 12
3)M0Such that0r1rP( ) d M
4) for every0,rP( ) d 0 a sr 1
Henc ePoisson Ke rnel is agood ke rnel.
5.4ABEL SUMMABILITY OF FOURIER SERIES:
Theorem: TheFourier Series of an integrable function on circle is
Abel summable tofat every point of continuity, Moreover, iffis
continuous on the circle then the Fourier series offis uniformly
Abel summable tof.
Proof: Step 1:We have, Abel mean of the functionf( )which is
approximated by the Fourier series wherefis integrable function
defined on the circle.inn
nf( ) a e
ninrn
nAf ( ) r a e
Abel Mean of Fourier Series offcan be written as convolution
rrAf ( ) (f P)( )Where,rP( )is the Poisson kernelmunotes.in
Page 54
54
Step 2:We have property of a good kernel,
Letnn1Kbe a family of good kernel andfis integrable function
defined on the circle then
whenever,fis continuous atx. If f is continuous everywhere then
above limit is uniform.
Step 3: We know that Poisson kernelrP( )isagood ke rnel
Therefore by above property men tion in step (2)
rr1
rr1lim ( f P )( ) f ( ) 0 r 1lim A f ( ) f ( )
Hence, Fourier series of an integrable function defined on the circle
isAbel summable tofat every point of continuity.
Also, by step (2)
Iffis continuou s on the circle then the Fourier series offis
uniformly Abel summable tof.
Ex: IfrPdenotes the Poisson kernel, show that the function
rPur , ,0 r 1 , R satisfies
(i)u0in the disc where2222 211rr r r(ii)
1lim ( , ) 0rur
for eachHowever uis not identically zero.
Solution: (i)We have ninr
nPr e
On differentiating w.r.t,w eh a v er ninnPinr e
r ninnPu r, inr e
(1)
Consider2222 2u1 u 1 uurr r rnnlim ( f )( x ) f ( x )munotes.in
Page 55
55
On differentiating (1)term by term , we obtain
3
n2 n1 nin in in2
3
n2 2i n
2
n2 3i nin n inu in n n 1 r e r e r err
in n inui n n n 1 r r rerr
u in n n 1 in n in r e
u0
(ii)We have 2
21,112 c o srrPrrr
2
r22
22P 1rur ,12 r c o s r1r 2 r s i n
ur ,
12 r c o s r
Consider
2211211 2 sin
lim ( , ) lim
12 c o s
lim ( , ) 0rr
rrr
ur
rr
ur
Since1ruis not identically zero.
munotes.in
Page 56
56
6
DIRICHLET PROBLEM
Unit Structure
6.1 Laplacian operator andHarmonic function s
6.2 Dirich let problem for the unit disc
6.3 TheSolution for Dirichlet problem
6.4 The Poisson integral
6.1LAPLACIA NOPERATOR A NDH A R M O NIC
FUNCTIO NS:
Two d imensional transient (time dependent) heat equation is given
by
22
22uu uxy k t whereu(x,y, t)is the temperature at point(x ,y)at timet.Transient mean stemperature depends o nt i m e .The&kare
physical quantities namely specific heat and thermal conductivity of
the material respectively .
If temperature is independent of time thenu0tand such a
physical situation is known as ste ady state. Hence a bove Heat
Equation can be written as
22
22uu0xy
This equation is known as Laplace equation .
Laplace equation can be written as :
22
22uuu0xy
The Operator2222xyis known as Laplacia n operator.
The Solution of Laplac eequationu0is known as Harmonic
function.munotes.in
Page 57
57
6.2DIRICHLET’S PROBLEM FOR U NIT DISC :
Consider unit disc in the plane22 2Dx , y / x y 1 whose
boundary is unit circle22 2,/ 1Cx y x y .
In polar co -ordinate(r, )with0r1 & 0 2,wehave unit
discD( r , ) / 0 r 1 , 0 2whose boundary is a unit circleC( r , ) / r 1 , 0 2.
The boundary value problemu0withuf ( )atr10 2is known as Dirichlet problem in the unit disc.
Note:The Laplace equationu0where2222xywhich is in
Cartesian form can be convert in term s of polar form(r, )as
22
22 2u1 u 1 u0rr r ri.e.2222 211rr r r6.3SOLUTIO NOF DIRICHLET PROBLEM FOR U NIT
DISC :
Problem Statement:
Consider unit discD( r , ) / 0 r 1 , 0 2whose boundary is unit ci rcleC( r , ) / r 1 , 0 2The governing steady -state heat equation given by the Laplace
equationu0i.e.22
22 2u1 u 1 u0rr r r(1)
subject edto boundary condition.,uf ( )atr1 , 0 2(2)
Solution: Let us apply separation of variable smethod to solve
Dirichlet problem.
Letu( r, ) F( r )G( )(3)
where ,F(r )is some function ofrandG( )is some function ofmunotes.in
Page 58
58
Using equation (3) in equation (1)
22
22 211(F G) (F G) (F G) 0rr r r 211F"G F' G FG" 0rr211F"G F'G FG"rrDivide both sides by FG
211F"G F'G FG"rrFG FG
211F" F' G"rrFG
2rF" F' G"rF r GrF" F ' G"Fr G
2rF " r F ' G "FG
which is separation form of given D.E.
Sincerandare independent variables we can write
2rF "r F ' G "FG(4)
Whereis constant
Consider,G"( )
G( )G"( ) G( ) 02d(D ) G ( ) h e r e , Dd(5)
Consider Auxiliary equation2D02DSinceGis a function ofand02i.e.Gis defined ona
circle i.e .Gis periodic of paired22
220let m , m zDmDm imunotes.in
Page 59
59
Hence solution of equation (5)can be written asG( ) Acos m B sin mOrim imG( ) Ae Be (6)
whereA&Bare constant s.
Now consider,
2rF " ( r ) r F ' ( r )
F(r )2rF " ( r ) r F ' ( r ) F ( r ) 0(7)
zput r e i.e. z log r2r.F'(r ) DF zr. F " ( r ) D ( D 1 ) F zwheredDdr
Put th esevalue sin equation (7)
2
2D( D 1 ) F( z ) DF( z ) F( z ) 0(D D D ) F (z) 0
(D )F (z) 0
Auxiliary equation
222D0Dm
Dmmz mzF( x) Ce Dewhere C andD arbitrary constant s.
PutZl o g rmlogr mlogrmm
m
mF(r ) Ce De
F(r ) Cr Dr
DF(r ) Crr
(8)
Using equation (6)and(8)in(3)i . e .u( r, ) F( r )G( )we have
mi m i m
mDu( r, ) cr Ae Ber (9)
Since0r1asr0thenmDrandFwill be unbounded at center and hence
arbitrary constantD0.munotes.in
Page 60
60Solutio n (9) can be written as
mi m i mu( r, ) Cr ( Ae Be )
m imu( r, ) Er e , m z(10)
whereEis new constant combining all the solutions
m im
m
mu( r, ) a r e (11)
wheremais arbitrary con stant.
Equation (11) g ives general solution of Dirich let problem to find
particular solution we need to find cons tantsmawhich can be
determined by boundary condition given by equ ation (2),uf ( )atr1.imm
mu(1, ) a e (12)
The above equation is complex form of Fourier series of periodic
functionf( )of period2.
Hence,mais aFourier coeffi cient which is given by,
2
im
m
01af ( ) e d2
(13)
6.4 THE POISSO NINTEGRAL:
Theorem: Letfbe integrable function define on the unit circle
then the function u defined in the unit disc given by the Poisson
integra la sru( r, ) ( f P )( )has the following property
1)uhas two continuous derivatives in the unit disc and satisfiesu0(i.e.usatisfies Laplace equation)
2) Ifis any point of continuity of functionfthen
r1lim u( r, ) f ( )Iffis continuous everywhere then this limit is uniform .
3) Iffis continuou st h e nu( r, )is the unique solution to the steady
state heat equation equation in the disc which satisfies above
condition (1) & (2) .munotes.in
Page 61
61
Proof :
Step (1):
Claim :u( r, )has two continuous derivatives in unit dis ka n di t
satisfies Laplace equation
we have,ru( r, ) ( f P )( )
Fix1inside each discr1centered at origin .
The SeriesuCan be differentiated term by term and the
differentiated series is uniformly and absolutely convergent .Thus,ucan be differentiated twice. (Infact,ucan be differentiated
infinitely ma ny times) and since this holds for for all1,wec a n
conclude that u is twice differentiable inside the unit disc.
In polar co -ordinates we have2222 2u1 u 1 uurr r rPutru( fP ) ( )Term by te rm different iation gives usu0Step (2) :
Claim :
a)1lim ,
rur f,w h e n e v e rfi sc o n t i n u e sa t.
b) If f is continuous everywhere then above limit is uniform.
We have, property of a good kernel,
Letnn1Kbe a family of good kernel andfis integrable function
defined on the circle then
whenever,fis continuous at. If f is continuous everywhere then
above limit is uniform.
We know that Poisson kernelrP( )isagood ke rnel Therefore by
above property mention in step (2)nnlim ( f )( x ) f ( x )munotes.in
Page 62
62
rr1
r1lim ( f P )( ) f ( ) 0 r 1lim u r, f ( )
whenever,fis continuous atx. If f is continuous everywhere then
above limit is uniform.
Hence claim.
Step (3) :
Supposev( r, )is another solution of steady state heat equation0in the unit disc and converges tofasr1i.e.
r1lim V( r, ) f ( )Sub claim :V(r, ) u(r, )For each fixrwith0r1the functionV(r, )has a Fourier series
expansioninn
nV(r, ) a (r) e
in
n1a( x ) V ( r , ) e d2
SinceV(r, )satisfies Laplace equation
i.e.22
22 2v1 v 1 v0rr r r(1)
Putin
n va ( r ) e n2
in in in
nn n 2
2
in in in
nn n 21na "( r ) e a '( r ) e a ( r ) e 0rr
1na "( r ) e a '( r ) e a ( r ) e 0rr
2
nn n 21na" ( r ) a' ( r ) a( r ) 0rr(2)
The solution of above equation (2) is given by,
nn
nn na( r ) Ar Br n 0{seesolution of Dirchlet problem }
wherennA& Bare arbitrary constants.
To evaluate constantnnAa n d Bwe observe thatnA( r )is bounded
becausevis bounded
Since,
nnnnnBa( r ) A rrSincena( r )boundednB0Hence,nB0munotes.in
Page 63
63
Also to findnAif we take limitr1Sincevconverges uniformly
tof,we can writenAas a Fourier coefficient
in
n1Af ( ) e d2
By similar arguments abo ve formula holds forn0Hence, for each0r1,the Fourier Series ofvis given byu( r, ).So by the
uniqueness of Fourier series of continuous function, we must have,v( r, ) u( r, )Note: IfuSatisfies Laplace equ ationu0in the unit disc and
converges to zero uniformly asr1thenumust be identi cally
zero.However if uniform convergence is replaced by pointwise
convergence then this conclusion may fail.
Ex1:In a semicircular plate of radius 1 cm ,the bounding diameter
is kept at00Cand the c ircumference is at fixed t emperature0
0uCuntil steady state condition revels . Find the temperature distribution
in the semi -circular plate.
Solution :The steady state temperature with the semi -circular plate
is given by Laplace equation (Polar form)
22
22 2u1 u 1 u0rr r r(1)
where,u( r, )represent temperature within semi -circular plate with
boundary conditionu( r,0 ) u( r, ) 0(2)0u(1, ) u(3)
We have general solution of diri chelet problem as
mimm
mu(r, ) a r e
This solution may be written asmmm
m0u( r, ) ( A cos m B sin m ) r
(4)
wheremmA& Bare arbitrary constants.u( r,0 ) 0i.e.u0 a t 0m
m0A c o s 0A0munotes.in
Page 64
64
put in (4)
m
m
m0u( r, ) B r sin m
(5)
Nowu( r, ) 0i.e. atu0atm
m 0 B Sin ( m ) r
Sin( m )mn n 0 , 1 , 2 , . . . . . . . . .i.e.m n
Also from (3)
0 u(1 , ) uWhere0r1 , uuput in (5)
0m
m0u B sin m
Which represents the sine series andmBrepresent the Fourier
coefficient of sine series.
m0
02B u sin m d
0
m
0
m 02u cos mBm
2u[( 1) 1]m
Put this value ofmBin equation (5)mm0
m02uu( r, ) [1 ( 1) ] sin m rm
The solution is not defined atm0m0
02B u sin m d
Putm000
02B u sin m d 0mm0
m12uu( r, ) [1 ( 1) ] sin m rm
m1(1 ) 0ifmis even2ifmis odd2m 10
m14u sin [( 2m 1) ]ru( r, )2m 1
Which gives temperature distributionu( r, )within the semicircular
plate.munotes.in
Page 65
65
Ex. 2 :Solve Dirichlet Problem on unit disc defined byD{ ( r , ) / 0r1 , 0 2 }Whose boundary is unit circleC{ ( r , ) / r1 , 0 2 }Subject to boundary conditionu sinonC.
Solution :Consider Dirichlet Prob lem on unit disc D whose
boundary is unit circle C given byu0subject tou sin on C..
We have general solution of Di richlet problem,mmm
m0u( r, ) ( A cos m B sin m ) r
(1)
On the boundaryCwe haveu sinatr1mm
m0sin ( A cos m B sin m )
Which is a Fourier series expansion where,mmA& Brepresents
fourier coefficient s.
2
m
01Af ( ) c o s m d
2
01sin cos m d
mA0...... { By Orthogonality property of circular function}
2
m
0
2
01B f ( )sin m d
1sin sin m d 0
02sin sin m d0m 1
1m 1
1m
mB1 & 0 m 1&A 0 m1u( r, ) B r sin =r sinEx. 3 :Find the solution of Dirichelet problem on unit disc D whose
boundary is unit circle C as defined before subjected to boundary
conditions.
0
0u0f( )u2munotes.in
Page 66
66
Solution :We have dirichlet problemu0Where2222 211rr r ron unit discD{ ( r , ) / 0r1 , 0 2 }Whose boundary is unit circleC{ ( r , ) / r1 , 0 2 }subject
to boundary condition
0
0u0f( )u2
We have general solution of Dirichlet problem
m
mm
m0
mm
m0u( r, ) ( A cos B sin m )r
at r 1
u(1, ) f ( )
f( ) (A c o sm B s i nm )
(1)
which is Fourier Series expansion off( )wheremmA& Bare
Fourier coefficients
we have , 2
m
01Af c o s m d
2
m0 0
011Au c o s m c o s m d
200
0uusin m Sin m
mm0 2
m
01Bf ( ) s i n m d
2
00
011u sin m u sin m d
200
0uu cos m cos m
m mm00
m0uu(1 ) 1 1(1 )mm
2u11m
atm0munotes.in
Page 67
67
2
0
0
21Bf ( ) 0 . d 0
Also,1 ( 1) 2 if m is odd0 if m is even
0
m2m 10
m1
2m 1 0
m14uB(2 m 1)
4uf ( ) sin ( 2m 1) r(2 m 1)
sin ( 2m 1) 4ur2m 1
munotes.in
Page 68
68
7
HILBERT SPACES
Unit Structure
7.1 Hilbert Spaces -Definiti on and its properties
7.2 Standard examples of Hilbert spaces
7.3 Properties of Hilbert Space
7.4 Cauchy -Schwar zi n e q u a l i t y
7.5 Orthonormal bas is
7.6 Equivalent character ization :Bessel’s inequality and
Parse val’s i dentity
7.1DEFI NITIO N: HILBERT SPACE
Definition 1 :
Let H be a complex Banach space then H is called Hilbert space if,xyassociated to each of two vectors x&yHin such a way that
i),,xy yx
ii),,,xy z x z y z
iii)2,, ,xx x xyz Hfor all scalars,Definition 2 :
Thevector space with their inner product and norm satisfying :
i)The inner product is strictly positive definite.
i.e.00xxii)The vector space is complete.
i.e. Every Cauchy sequence in the norm converges to a limit in the
vector space, is called Hilbert Space.munotes.in
Page 69
69
Definition 3 :
As e tH is called Hilbert Space if it satisfied the foll owing properties
i)Hi sav e c t o rs p a c eo v e r2orii)H is an inner product space satisfying.
a) ,fg g f(conjugate symmetry)
b),, ,fg h f h g h (linearity property)
c) ,0 , , , , ,ff f Hf g h H iii)Let12,ff f0fif and only if0fi.e. Inner product is strictly positive
definite.
iv)The Cauchy -Schwarz inequality and Triangle inequality
Cauchy -Schwarz inequality
,fg f g
Triangle inequality
,fg f g f gH.
V)H is complete in the metric,df g f gNote : In the above definition of Hilbert space, the Cauchy -Schwarz
inequality and triangle inequality are direct consequence of property
(I) & (II).
7.2 EXAMPLES OF HILBERT SPACE :
1)The spacedRLet12,, . . . . . . . ,dXx x x12,, . . . . . . . ,dYy y y
Then inner product of X & Y
11 2 2 ,. . . . .ddXY x y xy xyand
1222 212,
....dXX Xxx xWhich is usual Euclidean distance .munotes.in
Page 70
70
2)The spacedCLet12,, . . . . . . . ,dZz z z12,, . . . . . . . ,ddWw w w C
Then11 2 2 ,. . . . .ddzw z w zw zwand
11221112221,. . . . . .
......dd
dZZ Z z z z z
zz
2zz Z
3)The sequence space2The sequence space2overis set of all infinite sequences of
complex number as1012...... ,...... , ,...... ,.....nnaa a a a a such that
2
n
na
Let101.... ......Aa a a101.... ......Bb b bbe the elements in2Then ,nnnAB ab1112222,nn n
nnAA A a a a
4)The sequence space2NThe sequence space2Noveris set of all infinite sequence of
complex number as12...... ,.....n aa aone sided such that2
n
nNa
Let12......Aa a12......Bb b
1,nnnAB ab
1112222
11,nn n
nnAA A a a a
5)Square Integrable function2LE.
Let E be measurable subset ofdwith0mE.L e t2LEdenote
the space of square integrable function that are supported on E.
i.e.2LE= {f supported on E such that 2
Efx d x}munotes.in
Page 71
71
The norm & Inner product is defined as 11222,
E
EEfg f xgxd xff x f x d x f x d x
7.3PROPERTIES OF HILBERT SPACE :
Theorem 1: Let ,,XYZ H,,are scalars then
i),, ,XY Z X Z Y Z
ii),, ,XY Z X Y X Z
iii),, ,XY Z X Y X Z
iv) ,0 0 0, ,XX X HProof:
i)Consider
,,,,,,,,XY Z X Y ZXZ YZXZ YZXZ YZ
ii),,XY Z Y Z X ,,,,,,,,YX ZXYX ZXYX ZXXY XZ
iii),,XY Y Z XY Z ,,,1 ,,,
,,XY XZXY XZXY XZ
XY XZ
iv)Consider0, 0. 0, 0 0, 0XX X,0 0, 0 0XXmunotes.in
Page 72
72
Definition : Orthogonality : Let V be vector space overwith
inner product and associated norm.T h et w oe l e m e n tX andY are
said to be orthogonal if,0XYand we writeXY.
Theorem 2: The Pythagorean Theorem :
If X & YHare orthogonal then22 2 2XY X Y XY
Proof :
2
22,, , , ,,,XY XY XY X X X Y Y X Y YXX Y Y X Y
Since,, 0XY X Y Y X22 2XY X Y
2
22,, , , ,00XY XY XY X X X Y Y X Y YXY
SinceXY,, 0XY YX22 2XY X Y
7.4THE CAUCHY -SCHWARZ I NEQUALITY :
Theorem 3: For any ,XY H,XY X Y
Proof : Case (i) if00YYand,, 0 0XY X.
and obviously Cauchy -Schwarz inequality holds.
Case (ii) If0YFor any scalarwe have,0XY XY……. {+ve definite prop.},, 0XX Y YX Y ……{Linearity prop.},, , , 0XX X Y YX Y Y 22 2,, 0XX Y Y XY Since0Yput2,XYymunotes.in
Page 73
73
2
22
22 22, ,, ,,0XY XY XY XYXY X Y
YY Y 222
2
222,,,0XY XY XYX
YYY 2
2
2222,
,
,XYX
YXY X YXY X Y
Theorem 4: Triangle Inequality :
For any ,XY H,XY X Y
Proof :2,XY XY XY,, , ,XX X Y YX Y Y22,, ,XX X Y Y Y
ByCauchy Schwarz inequality us have,,XY X Y
22 2,,2XY YX X Y X YXY X X Y Y
22XY X YXY X Y
Theorem 5: Parallelogram Law
If ,XY Hthen22 2 222XY XY X Y
Proof :
Consider,
22
22,,
,, , ,,, , ,22XY XY XY XY XY XYXX X Y YX Y YXX X Y YX Y YXY
munotes.in
Page 74
74
7.5ORTHO NORMAL BASIS :
Definition : A finite or countably infinite subset12,. . . . . . . .ee of
Hilbert Space H is said to be orthonormal if
1,0kwhen keewhen kand 1keki.e. Eachkehas unit norm and is orthogonal toewhenever k.
Property :Let H be a non -zero Hilbert space so that the class of all
its orthonormal set is non -empty. This class is a partially ordered set
w.r.t. set inclusion relation.
Definition :
An orthonormal setiein Hilbert space H is said to be complete if
it is maximal in partial order set i.e. if it is impossible to adjoin the
vector e to collectioniein such a way that,ieeis an orthonormal
set which properly containsie.
Theorem : Every non -zero Hilbert space contains a complete
orthonormal set.
Proof :
We know that
i)An orthonormal setiein Hilbert space H is said to be complete
if it is maximal in partial order set w.r.t. set inclusion relation.
ii)Zorn’s Lemma states that if P is partially ordered set in which
every chain has an upper bound then P posses a maximal
element.
iii)Since the union of any chain of orthonormal set is clearly an
upper bound for the chain in the partially ordered set of all
orthonormal set.
The above three statements shows that every non -zero Hilbert space
contains complete orthonormal se t.munotes.in
Page 75
75
Theorem : If1kkeis orthonormal andkkfa e Hwhere sum
is finite then22kfa.
Proof :
2,,kk llff f a e a e2,
..... , 1
0kk
kkaa e eae e k lkl
Orthonor mal Basis:
Given an orthonormal subset 121,. . .kkee eof Hilbert Space H
Spans H i.e. Linear Combination of elements in12,. . . . . .ee are dense
in H and12,. . . . . .ee are linearly independent then we say that12,. . . . . .ee is an orthonormal basis for H.
Note : For anyfHand1kkeis orthonormal basis for H then
1kk k
kfa e a C
i.e.fcan be written as linear combination of elements in12,. . . . . .ee .
Consider,
1
1,,
,jk k jk
kkj
kfe a e eaee
When,, 1 & , , 0kk k j for k j e e for k j e e i.e. ,jjfe aHence, whenever
1kkkfa e
then,kkaf e.
7.6EQUIVALE NT CHARACTERIZATIO N:
Theorem : The following property of an orthonormal set 1kkeare
equivalent.
1)Finite linear combination of elements in 1kkeare dense in H.
2)IffHand ,0jfe jthen0f.munotes.in
Page 76
76
3)IffHand
1NNk kkSf a ethenNSf fasNin norm of
Hilbert space H.
4)If,kkaf ethen22
1kkfa
.
Proof:S t e p( 1 ):12
Given : finite linear combination of elements in1ekkare dense
in H.
LetfHand ,0jfe jClaim :0fProof : Since fini te linear combination of elements in 1kkeare
dense in H, there exist a sequencengof elements in H which is
finite linear combination of elements in 1kkesuch that
nfg oasn.
Since ,0jfe j,0 . . . .nfg n {ngis finite linear combination of elements in
1kke}
By Cauchy -Schwarz inequality.
Consider,
2,,nnff f f f g f f g,, ,
,,,. . . , 0nn
n
nff g ff f g
ff f g
ff f g
Lettingn200n ff g a s n00f
fStep 2 :23
Given ,, 0 ,jfHf e jthen0fAlso we have
1NNk kkSf a ewhere,,kkaf e.munotes.in
Page 77
77
Claim :0NSf fASNConsider,11 1
1, 1
1,, ,
,,
,,
,NN N NN
NN N
kk kk
Kk
NN
kk k k
Kk
kKfS fS f f S f S fS f
fa e a e a e
af e a a e e
aa e e
1, 1
11
22
11,
,1.....NN
kk
Kk
NN
k
kk kk
KK
NN
kk
KKaa e eee kaa aaokaa
0,0NN
NNfS fS ffS f S f
By Pythagorean theorem,
222
2 2
1NN
N
Nk
Kff S fS ffS f a
221N
k
Kfa
Letting N221k
Kaf
{This is known as Bessel’s Inequality }
Bessel’s inequality implies that series21k
Ka
is convergent.
Therefore, pa rtial sum 1NNSfforms Cauchy seq. in H.
Since
11NMNM k k k kKKSf Sf a e a e
1
2
1N
kk
KM
N
k
KMae N Ma whenever N M
munotes.in
Page 78
78
Since H is completegHsuch thatNSf gasN.
Fix j and note that for all sufficiently larger N,,, ,Nj j NjfS fe f e S fe
,()0jk k j
jjaa e ea a orthonormality
SinceNSf gwe can write
,0jfg e jfgo…………. {By given hypothesis (2)}fg,0 , 0jfe j fHenceNSf fasNi.e.0NSf fasNStep 3 : (3)(4)
Given
1NNk kkfH Sf a eNSf f oasNClaim :221k
kfa
We have 2221NNkKff S f a
Letting Nand using0NSf fasN221k
Kfa
This is known as Parseval’s Identity .
Step 4 : (4)(1)221k
kfa
Claim : finite..cofelements in 1kkeare dense in H.
We have from equation
2221NNkKff S f a munotes.in
Page 79
79
asN, we have Parseval’s identity.221k
Kfa
0N fS fasNSince eachNSfis finite linear combination of elements in 1kke.
Hence finite linear combination of elements in 1kkeare dense
in H.
Ex1:Let H be Hilbert Space. Sh ow that for any ,xy H22 2 24,x y x y x y i x iy i x iy
Solution:
Consider22 2 2x y x y i x iy i x iy
22
22,,,,,
,xyx y y xxyx y y xi x iy x iy
i x iy x iy
2
2
22
222, 2, , , ,
,, ,
2, 2, , ,
,,
2, 2, , , , ,
4,x y y x i x x iy iy x iy iyi x x iy iy x iy iy
xy yx i x ixy i yx y
ix i x y i y x y
xy yx xy yx xy yx
xy
Ex2:Let12,, . . . . ,nee ebe a finite orthonormal set in a Hilbe rt space
H. If xis any vector in H. Then show that
221,n
i
ixe x
Also show
1,n
erii jixx e e e for each j.munotes.in
Page 80
80
Solution :Consider
2
1
11
2
11 1 1
2
11 1 1
2
110,
,, ,
,, , , , , ,
,, ,, , ,,
,, , , , ,n
ii
i
nn
ii j j
ij
nn n njj i i i i jjji i j
nn n n
ji i i ij i j
ji i j
nn
jj i i i i
jixx e e
xx e e xx e exx x e e x e e x x e ex e exx e x e x e e x x e x e e e
xx e x ex e x ex e x e
1
2
111
2 22 2
11,, ,, ,,
,,n
i
nnn
ii ii ii
iii
nn
ii
iixx e x ex e x ex e x e
xx e x e x
Consider1
1,,niijixx e e e
1,, ,nji i jixe xe e e
1,, ,nji i jixe xe e e
1,, ,
,,
0,jj j j
jj
n
ii j
ixe e e xe
xe xexx e e e j
Ex3:Let H be Hilbert space. Letiebe an orthonormal set in H.
Then show that the following conditions are equivalent.
1)ieis complete
2)ixethen0x3)IfxHthen ,iiixx e e 4)IfxHthen22,i
ixx emunotes.in
Page 81
81
Solution :
Step -I:12
Letiebe complete.
Supposeixe iSub claim -0xSuppose that0xDefinexex
Clearly,0iiee x e i.T h u s,ieeis ort honormal set which
properly containsieWhich is contradiction toiebe complete.
Hence our assumption is wrong.0xStep -II :23
Supposeixe ithen0xSub claim : ,iiixx e e We know that ,iixx e e is orthogonal toieBy hypothesis, ,ii xx e e ,iixx e e Step III :34
Suppose for ,,iixH x x e e Sub claim :22,ixx e
Consider 2,xx x
2,, , ,
,, ,
,, 1
,ii j j
ij i j
ij
ii
i
i
ixe e xe e
xe xe e e
xe xee orthonormal setxe
munotes.in
Page 82
82
Step IV :41
Suppose22,,i xHx x e
Sub claim :ieis complete.
Supposeieis not complete then it is proper subset of an
orthonormal set,iee.S i n c eer
iee iPutxein above identity.22
2,
00iee e
This is contradiction to e is a unit vector
Hence our assumption is wrong.
Thusieis complete.
Note : Letiebe complete orthonormal set in Hilbert space H. Let
x be an arbitrary vector in H. Then,ixeare Fourier coefficients of
x and the expression ,iiixx e e is called Fourier series expansion
of x and the equation,22,ixx e is called Parseval’s iden tity.
(all w.r.t. complete orthonormal setieunder consideration.)
Ex4:If1niieis an orthonormal set in Hilbert space H and if x is
any vector in H then,0ii Se x e is either empty or c ountable.
Solution :
For each +ve integer n, consider2
2,ni ixSe x en .W eh a v e
Bessel’s inequality.
221,n
i
ixe x
Bessel’s inequality gives us,nScontains at most1nvectors since
1.nnSS
Si se i t h e re m p t yo rc o u n t a b l e .
Ex5:Show that a closed convex subset C of a Hilbert space H
contains a unique vector of smallest norm.munotes.in
Page 83
83
Solution : We recall from the definition in Problem 32 -5t h a ts i n c e
Ci sc o n v e x ,i ti sn o n -empty and contains/2xywhenever it
contains x and y. Let d = inf:xxC. There clearly exists a
sequencenxof vectors in C such thatnxd.B yt h ec o n v exity
of C,/2mnxxis in C and/2mnxx d,s o2mnxx d.
Using the parallelogram law, we obtain22 2 222 222
22 4 ;mn m n mn
mnxx x x xxxx d
and since22 22 2 222 4 2 2 4 0mnxx d d d d, it follows thatnxis a Cauchy sequence in C. Since H is complete and C is closed
Ci sc o m p l e t e ,a n dt h e r ee x i s t sav e c t o rxi nCs u c ht h a tnxx.I ti s
clear by the fact that lim limnnxx x dthat x is a vector in C
with smallest n orm. To see that x is unique, suppose thatxis a
vector in C other than x which also has norm d. Then/2xxis
also in C, and another application of the parallelogram law yields.
222222
222 22
,22xxxx xxxxd
which contradicts the definition of d.
munotes.in
Page 84
84
8
HILBERT SPACE2,LUnit Structure
8.1 Hilbert Spaces20, 2Lor2,L
8.2 Existence of orthonormal basis
8.3 Orthonormal basis for20,2Lor2,L
8.4 Mean Square Convergence
8.5 Best Approximation Lemma
8.1 HILBERT SPACE2,LConsider the Hilbert space2L, associated with measure space0, 2where measure is Lebesgue measure and integrals are Lebesgue
integrals. This space essentially consist of all complex functions f
defined on0, 2which are Lebesgue measurable and square
integrable.
i.e. 2
2
0fx d x
Its norm and inner product is defined as 1222
2 0ff x d x
2
0,fg f x gxd x
The function2inxewhere0, 1, 2,....nforms an orthonormal
basis for H since2
02.0imx inxmnee d xmn
This gives us ,
2inx
neex n
For any2fL,t h en u m b e r , 2
01,
2inx
nnCf e f x e d x
gives
Fourier coefficient of the Fourier series expansion of f given by,
1
2inxn
nfx C e
.munotes.in
Page 85
85
Definition:
The Hilbert Space20, 2Lor2,L.
Let R denote set of complex valued Riemann integrable function s
defined on a circle then the inner product and norm is defined as
2
01,2fg f g d and 1222
2
01
2ff d .
Similarly, for interval,.
1,2fg f g d
and 122
21
2ff d
.
8.2 EXISTE NCE OF ORTH ONORMAL BASIS OF
HILBERT SPACE
Theorem : Any Hilbert Space has on orthonormal basis.
Proof : The proof of this theorem is follows from gram Schmidt
process.
Given finite family of elements12,. . . . . . ,kff f,t h es p a no ft h i s
family is set of all elements which are finite linear combination of
elements12,. . . . . . ,kff fWe denote it by span12,. . . . . . ,kff f.N o ww e
construct a sequence of orthonormal vectors say12,. . . . . .ee such that
span12,. . . . . . ,nee e=s p a n12,. . . . . . , 1n ff f n.
Let us prove this by induction on n.
Step 1 : By Linear independent hypothesis,10fthen we can take111fef.
Step 2 : Assume that orthonormal vectors12,. . . . . . ,kee ehas been
found such that span12,. . . . . . ,k ee espan12,. . . . . . ,kff f.
Claim : span12 1,. . . . . . ,k ee espan12 1,. . . . . . ,kff f
i.e.'
11
1kkk j jjef a e
munotes.in
Page 86
86
'
11
1
1
1
1
1
'
11,,
,,,,,,k
kj k i i j
i
kkj i i jj
kkj i i ji
kj kj jee f a e efe a e efe a e eee fe a
To have :'
1,kjee0jWe must have1,kj jfe aThis choice of for 1jaj kassure that'1keis orthogonal to1,....kee.
Moreover, our linear independent hypothesis assure that'
10keHence, the choice of1keis'11 '1k
k
keee
.
Hence span12,. . . . . . ,n ee espan12,. . . . . . ,nff f.
Thus, Every Hilbert space has an orthonormal Basis.
Example: Consider, Hilbert space H. Transform Basis12,. . . . . . ,nff finto orthonormal basis where,12 31, 1,1 , 2,1, 0 , 1, 1,1ff f .
(Take Euclidean inner product)
Solution:
1)1
1
11, 1,111 1,,33 3 3fef 2)Using11
1kkk j jjef a e
222 1 1 , eff e e 21
2
2
254 1,, ,33 3
54 1,,
42 42 42jK jea f eee
e
munotes.in
Page 87
87
3)Using11
1kkk j jjef a e
333 1 13 2 2eff e ef e e
3
3
3
3123,,77 712 3,,14 14 14e
ee
e
8.3 ORTHO NORMAL BASIS OF2,L:
Theorem 1:The setsinx
ne& cos sinnnnx nx are
complete orthonormal basis for2,L.A l s ot h es e t s cosnnx&sinnnxare complete orthogonal basis for20,L.
Proof : Consider,inxnxe
Let2,fL
Let0(small)
Claim : Nthpartial sum of Fourier series of f approximate f in norm
withinwhen N is sufficiently large.
i.e.NSf fasN.
We can find2periodic functionfpossessing deriv atives of all
order such that3ff.
Let 12,nnCf 1 12,2inx
nnCf x e d xf e
and 12,nnCfbe Fourier coefficients of&ffrespectively.
We know that Fourier seriesnnCfuniformly.
Hence it converges tofin norm.
If we take N sufficiently large then3N
nn
NfC
By Bessel’s inequality
22NN Nnn nn n nNN NCC C C munotes.in
Page 88
88
2
nnCC N
223ff
Consider,
NN N Nnn nn nn nnNN N NfC f ffC C C
Taking norm on both side
Now using triangle inequality.333NN N Nnn nn nn nnNN N NfC f f fC C C
This proves completeness of setinxnein2,L.
Completeness of cos sinnnnx nx in2,Lcan be derived
by completeness ofinxe.
Similarly, completeness ofcosnx&sinnxin2,Lcan be
prove by c onsidering even & odd extension of2[0,2 ]fL to[, ].
Theorem 2:Let2,HLandintnft efor0, 1, 2,....nand,tthen0, 1, 2,......nft n is an orthonormal basis
for2,L.
Proof :
Step 1 : Lets verify0, 1, 2,......nft n is orthonormal
int i t 11,.22m
nm n mff ft ft d t ee d t
int i t 1.2mee d t
in 1
2mted t
munotes.in
Page 89
89
1
2
1
2
1cos sin cos sin2
2 sin
2
sin0in mt
in m in me
in m
eein m
nm i nm nm i nmin m
in m
in m
nm
nm
{Since nmand sin 0kk}
,0 ,nmff nm Now consider,
2
2
int int1,2
1
2
112nn n n nff f f t f t d tee d t
,1nnff nHence,
,0 ,nmff nmand21nfn.
Thus, set0, 1, 2,......nft n is orthonormal.
Step 2 : Claim :0, 1, 2,....nft n is basis for2,HL.
Since0, 1, 2,....nft n is linearly independent and it spans2,HL,h e n c e0, 1, 2,....nft n is basis for2,HL.munotes.in
Page 90
90
Theorem 3:The set 1c o s s i n,, 1 , 2 , . . . . . , ,2nt ntnt isan
orthonormal basis for2,L.
Prove of this theorem is similar to above theorem so left as an
exercise
8.4 MEA NSQUARE CO NVERGE NCE:
Consider space R of integrable functions define on the circle.
Letinnee,n is an integer then clearly, Setnnzeis
orthonormal.
Consider, 2
01,2in
nfe f e d
2
01
2infe d
ˆnfn a{Fourier coefficient}
where,ˆfnornaisFourier coefficient of complex Fourier series of
function f.
Consider the Nthpartial Sum ,Nn nnNSf a eThen orthonormal property of familyneand the fact that
,nnfe agives that t he differenceNfS fis ort hogonal tonei.e.NnfS f e nN.
Since,, ,Nn n NnfS fe f e S fe
,
,
,1
00nm m n
mN
nm m n
mn
nnaa e e
aa e eee m naamn
Hence,NfS fis orthogonal tonen NnnnNfa e is orth ogonal tonnnNbewhere,nbis complex.munotes.in
Page 91
91
We have,nn nnnN nNff a e b e By Pythagorean theorem,222
222nn nn
nN nNff a e b e
whennnabthe ort hogonal proper ty of familynnegives us
222nn nnN nNae a .
222
2 2NnnNff S f a .
This is called mean square approximation .
8.5BEST APPROXIMATIO NLEMMA :
Statement: If f is integrable function defined on a circle with
Fourie rc o -efficientnathen Nn nnNfS f f c efor any
complex numbernc. Moreover, equality holds when
nnca n N.
Proof :
Considernn n n nnN nNfc e f a b e wherenn nabcnn nn nnnN nN nNfc e fa e b e Taking norm on both sides.nn nn nnnN nN nNfc e fa e b e
Since a nis Fourier coefficientnn N
nNae S fnn N nnnN nNfc e f S f b e .
Also we haveNfS fis orthogon al tonnnNbe.munotes.in
Page 92
92
By Pythagorean theorem.
222
nn N nn
nN nNfc ef S f b e
This statement gives us, nn N
nNfc e f S f
whennncawhere,nais Fourier coefficient given.0nn n nca b bNn nnNfS f f c e
munotes.in
Page 93
93
9
RIESZ FISHER THEOREM
Unit Structure :
9.1 Completeness of2dL9.2 Bessel’s inequality for2,Lfunction
9.3 TheRiesz Fisher Theorem
9.4 Unitary Isomorphism
9.5 Separability of2,L9.1COMPLETE NESSOF2dL:
Theorem : The space2dLis complete in its metric.
Proof : Let1nnfbe a Cauchy seque nce in2L.
Consider1knkfbe a subsequence of 1nnfwith the property
121kkk
nnff k(1)
Let 11
1kk nn n
kfx f x f x f x
(2)
and 11
1kk nn n
kgx f x f x f x
(3)
Consider partial sum
11
1kkK
kn n n
kSf x f x f x f x
and
11
1kkK
kn n n
kSgx f x f x f x
The triangle inequality implies that
11
1kkK
kn n n
kSg f f f
1
12Kkn
kf{by (1)}munotes.in
Page 94
94
Letting Kand applying mon otone convergence theorem we
have,
2gSince20kk1 knSg f x thkpartial sum of g is finitegis square summable & hence square integr able
2gfg
{by (2) & (3)
2f2dfLIn particular, the series defining f converges almost everywhere and
since 1thkpartial sum of this series is preciselyknf,weh a v e ,knff xalmost everywhere for all x.
To show
knffin2dLWe have, 2 22kfSf g kApplying dominated convergence theorem, we obtain,0knffask.
Since 1nnfis Cauchy sequence for given 0,Nsuch that
,nm N2nmff.
Ifknis chosen, so tha tknN2knffBy triangle inequality
22 kk nn n nff ff f f nffwhenevernNHence sequencenffin2dL2dLis complete.munotes.in
Page 95
95
9.2BESSEL’S I NEQUALITY FOR2,L:
Iffis2L-periodic function then 222ˆfn f .
Proof : LetNfS f gwhereNSfis Nthpartial sum offi.e.
ˆNinxN
nNSf f n e .
Consider,,,nN nge f S f e,,nN nfe S f e
ˆ ˆ,
ˆ ˆ ,
ˆ ˆ ,
ˆˆ
0
,0
1}N
imx
n
N
N
imx
n
N
Nimx inxN
inx
n
nmfn fm e efn fm e efn fm e efn fn e e
ee m m
mn
Consider,
2 2
2 2
,,, , ,,,N
NN
NN N N
NNfS f g
Sf g Sf gSf Sf Sf g g Sf g gSf Sf g g
,0
ˆ,0,0n
n
Nge
gf n e
gS f
222222NfS f g
22
22NfS f (1)munotes.in
Page 96
96
Consider,
2
2
,,
ˆ ˆ,
ˆˆ ,NN N
NNinx imxNN
N
inx imx
nm NSf Sf Sf
fn e fm e
fnfm e e
2ˆˆ ˆNN
NNfnfn fn (2)
Substituting (2) in (1) we get
22
2ˆN
Nff n
Writing N222ˆ
nfn f
Thus we proved,
222ˆ
nfn f
9.3THE RIESZ FISHER THEOREM:
Statement : Suppose that fis2L-periodic function then the Nth
partial sum of its Fourier SeriesNSfconverges to f in2L(I) where,I.
i.e.2lim 0NNSf f
Moreover, 222ˆ
nfn f
{Parseval’s identity }
Conversely, suppose thatnnais two sided complex sequence
which issquare summable i.e.2
nathen there is unique
function f in2L(I) that hasnaas itsFourier coefficient.
Proof : Step (1) : Let2fL(I)
Givenochoose a continuous periodic function g such
fg…… (1)
Then22NN NSf f Sf gS g f gg222 2NN NSf f Sf g S gg g f munotes.in
Page 97
97
We haveNSf fNSf g f g
2222
2
222. . . . . 1
2NN
N
NNSf f f g S gg g fS g g from
Sf f S gg
Since g is continuous periodic function ,2NSg gfor large N
2
2
23
0
lim 0N
N
NNSf f
Sf f a s N
Sf f
Step (2) We haveNNfS f S fi.e.NfS fis orthogonal toNSf.By Pythagorean theorem,
222
222NNff S fS f
Also we have 22
2ˆN
N
NSf f n
Weg e t 22 2
2 2ˆN
N
Nff S f f n .
Letting Nand using 2
2lim 0NNfS f
22
2ˆff n
(This is known as Parseval’s Identity )
Step (3) Converse part :
Suppose that nnais square summable two sided sequence of
complex numbers .
Let NinxNn
nNfx a e.
The orthonormality of exponential fun ctionneimplies that for M 22'NM n n
MnNf f a f a parseval s identity andˆnnaf.
By the assumption of square summability i.e.2
na.munotes.in
Page 98
98
The right side of above equation converges to zero as ,MN.i . e .
20NMffas ,NM.nfis Cauchy sequence in2LI.
Let f be the limit
By orthonormality,,&Nn nfe a N nLetting Nlim ,
,
1
2Nn nN
nn
inx
nfe a n
fe a nfx e d x a n
nais Fourier coefficient of Fourier series of function f.A l s o by
uniqueness of Fourier series, we can conclude that there exists
unique f whose Fourier coefficient isna.
9.4UNITARY ISOMORPHISM :
Unitary Mappings : Suppose H & H’ be two given Hilbert spaces
with respect to inner product,H&1,Hand corresponding normH&1H.
Am a p p i n g1:UH His called unitary mapping if
1)Ui sl i n e a r
i.e.Uf g U f U g where,are scalars &
,fg H.
2)Ui sb i j e c t i o n
3)1HHUf f f HNote:
1)Since unitary mapping U is bijective ,its inverse11:UH His
also unitary mapping .(prove it)
2)Property (3) of unitary mapping implies that1 ,, ,HHUf Ug f g f g HUnitary Isomorphism : Two Hilbert spaces1&HHare said to be
unitarily equivalent or unitary isomorphic ifau n i t a r ym a p p i n g1:UH H.
Note : Unitary isomorphism of Hilbert spaces is an equivalence
relationmunotes.in
Page 99
99
Theorem : Any two infinite dime nsional Hilbert spaces are unitary
equivalent or unitary isomorphic.
Proof : If &HHare two infinite dimensional Hilbert spaces.
We may select orthonormal basis i.e.12,, . . . . . . .ee of H &''
12,, . . . . . . .ee ofH.
Consider the mapping :UH Hdefine das if
1kkkfa e
thenUf gwhere,
1,kk
kga e g H f H
.
Claim :1:UH His unitary
1),, ,Uf h U f U h f h H are scalar s.
Let
11,kk kkkkfa e h b e
Consider
11
1
1kk kkkk
kk k
k
kk k
k
kk kk
kk kkUf h U a e b eUa b e
ab e
ae beae be
Uf U h
2)Claim U is bijective
Clearly,Uf U hkk kkkk kk
kkUa e Ub eae be
ab k
fhU is one one
For anykkga e H,we havekkfa e Hsuch thatUf g Uis onto .
Clearly U is invertiblemunotes.in
Page 100
100
3)Claim1HHUf f
Consider,
11kk kkkkfa e U f a e
1
1
12
2
1
1..... '
.... 'kk H
k H
k
k
kk
k H
HUf a e
a By parseval s identitya e again by parseval s identityf
Hence by (1), (2) & (3) :UH His unitary and hence &HHare
unitary isomorphic.
Theorem : Suppose2,fLthen the mappingnfais
unitary correspondence between2,L&s q u a r e summable
sequence2Z.
Proof :
Step (1) : Let2,HLwith inner product
1,2fg f x gxd x
Let2,fL
Let1kkeis an orthonormal basis for H.
1kk k
kfa e a C
Step (2) : Let12HZ(sequence space) defined as
2 2
101
1..... , , .... &jn
nZa a a a C a
with inner
product.
,kkkab ab
Step (3) Consider a mapping :UH Hsuch that&nnfa f H a Hkk kUa e aClaim : :UH His unitarymunotes.in
Page 101
101
1)Sub-claim : U is linear
i.e.Uf g U f U g ,scalar ,fg HLet
11,gkk kkkkfa e b e
Uf gUf g
kk kkkk k
kk
kkUa e b eUa b e
ab
ab
Uf U g
2)Sub-claim : U is bijective
i.e. U is one -one and onto.
Clearly, U is one -one
SinceUf U gkk kkkkUa e Ub eab
kk
kk kkab Kae be f g Ui so n e o n e
To Prove Ui so n t o
Consider,22
11N
Nk k k k
kkfS f a e a e
21
2
1kk
kN
n
nNaea
If2
nazthen
2
2
11
2
1
2
1NM
NM k k k k
kk
N
kk
kM
N
k
kMSf Sf a e a e N Mae
a
0NMSf Sf as ,NM.munotes.in
Page 102
102
Hence completeness of2Lguarantee that, there is2fLsuch that0N fS fasN.
As f hasnaas its Fourier coefficient we can conclude thatnfais onto (By the uniqueness of Fourier coefficient)
Hence U is bijective
3)Claim :1HHUf f
Consider,1122nHHUf a 22,nnnnn
Haaaaa
f
Hence by (1) ,(2) & (3) ,1:UH His unitary mapping.
9.5SEPARABLE HILBERT SPACE :
Definition : The space H is said to be separable if their exist
countable collectionkfof elements in the space H such that there
linear combination are dense in space H.
Theorem : A Hilbert Space H is separable if and only if it has
countable ortho normal basis.
Proof : Step 1 :Suppose that Hilbert space H is separable.
Claims : Hilbert space H has countable orthornormal basis.
Suppose Hilbert space H has uncountable orthornormal basis sayeThen 1, , & ee11,,22Se Se ,&.
Hence there exist an uncountable family of disjoint open sphere with
radius ½.Hi snot separable which is a contradiction to our assumption.
Hence Hilbert space H has countable orthonormal basis.
Step (2) Converse part
Hilbert Space H has countable orthonormal basismunotes.in
Page 103
103
Claim : Hilbert space H is separable.
Let H has a countable ortho rnormal basis sayne.
LetfH1
1,
,nn
nnnnnnff e e f Hfe afa e
fHis a cluster point (i.e. limit point) of set of linear
combination of elements ofne.
Sinceneis complete orthonormal basis, set of linear combination
ofelements ofnecontains countable dense set of linear
combination ofnewith rational coeffi cients.
Hence H is separable Hilbert space.
Theorem : Hilbert Space2,Lis separable.
Proof : Step (1) : Let2,HL
We know that Hilbert space2,Lhas an orthonormal basis0, 1 , 2,........nfn.
Where, int,,2neft n t .
Since set of integer is countable, hence set of orthonormal basis0, 1 , 2,........nfnis countable.
Step (2) : If Hilbert Space H has a countable orthonormal basis then
Hi ss e p a r a b l e .
Step (3) : Hilbert Space2,Lhas a countable orthonormal basis.
Hence H is separable.
munotes.in