M.Sc.-Mathematics-Analysis-II-SEM-II-munotes

Page 1

    1 1
LEBESGUE OUTER MEASURE
Unit Structure :
1.0 Objective  
1.1 Introduction  
1.2 Algebra 
1.3 Extension Measure  
1.4 Lebesgue outer measure  
1.5 Properties of outer measure  
1.6 Summary  
1.7 Unit End Exercise  
1.0 OBJECTIVE
After going thr ough this chapter you can able to know that  
 Concept of Algebra, Measurable set.  
 Extension measure in n 
 Lebesgue measureable set  
 Lebesgue outer measure & its properties.  
1.1 INTRODUCTION
In this chapter w e shall fist study such a verified theory function d -
dimensional value based on the notation of a measure, and then we 
shall use this theory to build a stronger and more flexible theory.   
Now if we want to partition the range of a function, we need same 
way of measuring how much of the domain is sent to a particular 
region of the partition, To set a feeling function what we are aiming 
function  let  us  assume  that  we  want  to  measure  the  volume  of 
subsets 3,ACand that are denote the volu me of A by A. 
 
 munotes.in

Page 2

  
 Analysis II 
2 Then function we have   
i) Ashould be non -negative number as . 
ii) 0 it will be convenient to assign a volume to the empty 
 set.   
iii) If 12, ,.....,nAA A are non overlapping disjoint sets then   
  
1 1nnn nAA 
  
This means that the volume the whole is equal to the sum of the 
volume  of  the  parts.  This  problems  leads  us  to  the  theory  of 
measures where we try to give a  notation of measure to subsets of an 
Euclidean space.   
Defenition :
The Euclidean norm on n is 12221....d xx x  . 
The distance between  ,nxy is xy 
1.2 ALGEBRA
Definition :
Let X be a set. A collection A of subsets of X is called a algebra 
of the following hold.   
i) A 
ii) AA X AA  
iii) 12
1, ,....,i
iAA A A A  
Note :
The pair ,XA is called measurable space and elements of A are 
called measurable sets.   
Example 1 :
Let 1,2,3X and 11,1 , 2 , 3, , ,bX 21,2,3, 3 , ,bX. 
Check whether 1b and 2b are both algebras or not.   
munotes.in

Page 3

 
 Lebesgue outer measure  
3 Solution :
I) Let 1,2,3Xand 1bis not Algebra.  
Since it does not contain 1C. 
II) 2b is Algebra since it satisfies all condition of Algebra 
i.e. 1Xb 
  2b 21,2b & 21,2Cb 2b is Algebra. 
Example 2 :
A measure on a topological space X whose domain is the  Borel 
algebra is called a Borel measure.   
Example : For  every xX,  the  Dirac  measure  is  given  by 
1
0xif x AAif x A
 
Definition :
Let be a set function whose domain in a class A of subsets of a set 
X and whose values are non -negative extended reals, we say that is contably additive if   
1 1kkk kAA 
  whenever, kA is a 
sequence of painoise disjoint set in A whose union is also in A.  
Theorem :
Let  be a finitely additive set function, defined on the Algebra 
A. Then  is countably additive iff it has the following property : if 
nAA and 1nnAA Anti  for  each  positive  integer n,  and  if 
1n
nAA then  
1limnnnnAA
 .  
Proof :  
Suppose is countable additive Let nAbe a sequence of elements 
in A s.t. 12
1,......,i
iAA A A A   munotes.in

Page 4

  
 Analysis II 
4 s.t.  
1liminniAA
  
Define 11BA 
  1KK KBA Afor 2K 
Examples 3:
Let ;iAi I be  collection  of Algebra.  Show  tha iiIA is a Algebra, but iiIA is not in general.   
Solution :
Let iiIAi A 
To show that A is a Algebra 
a) If A 
 iA is Algebra, iI 
          iAi I   
 i
iIAA  
b) Let AA iiIAA iA is Algebra iI  For C
iiAA A AiI   
ciiI
cAAAA 
c) Let , 1,2....kAA k  
then kA Ai i i  munotes.in

Page 5

 
 Lebesgue outer measure  
5  1
1
1ki
kkiki I
k
kAA iAAAA




 
 iiIAA is a Algebra 
Now, we have to show that iA is not a Algebra. 
Let 1,2,3X 
Let 1,, 1 , 2 , 3AX  2,, 3 , 1 , 2AX  
then 1A & 2A are Algebra  but 12AA is  not Algebra. 121AAbut 121,3AA.  
Clearly Bi A i and 'Bi s are pairwise disjoint we first show that 
1k
k
iA Bi 
By induction on ‘k’  
The result is trivial when 1k 
Assume the result is true for 1k 
i.e.  1
1
1k
k
iA Bi 
Now 1
11kkkiiBi Bi B  
                    11kk k
kAA A
A  The result is true for k.  by introduction is true for all  k 
 
11k
k
iA Bi k    munotes.in

Page 6

  
 Analysis II 
6 Note that 
11 1k
k
kk iA A Bi
    
                 
1kkB  is countably additive, we have   
 
1 1kkk KAB B  
   
          
1
1lim
lim
limn
knk
n
knk
nnBBA


 
Conversely,   
Suppose whenever if 123 ...., ,r A A A Ai B Ai  AA 
Then  
1limnniAi A
  
T.S.T.  is countably additive  
Let nA be a pairwise disjoint sets in A.   
Define 
1k
k
iB Aithen kBA and 12.......BB By hypothesis, we have  

1limnniBi B
  
But 
11 1ikii KBi A
   
               
1iAi munotes.in

Page 7

 
 Lebesgue outer measure  
7 

11
1
1
1lim
lim
limii
nn
n
ni
n
ni
iAi Bi
BAiAiAi








   





 
Theorem :
Let A be a Algebra, If ,uv are measures on A, ,0tt and 
AA hen the following are measures on A.   
a)  defined by EE E E A     
b) t, defined by ,tt E E A  
Proof :
a)  defined by ,EE E E A     is a measure 
on A.   &  are measure on A.   They are countably additive non -negative set function.   E is also countably  additive non -negative set functi on 
whose domain is A.    is a measure on A.   
b) tEt E 
  is a measure on A  
  is  countable  additive  non  negative  set  function  whose 
domain in A.   for EA tEt E and t is also countably additive non -negative set 
of function whose domain is A  t is measure on A.   munotes.in

Page 8

  
 Analysis II 
8 1.3 EXTENSION MEASURE
Defin ition :
Let X be a set, nA Exterior measure or outer measure on X is a non -
negative, extended real valued function *whose domain consist of 
all subsets of X and which satisfies :  
a) *0 
b) (Monotonicity) if AB then **AB 
c) (Countable sub -additivity)  
For any sequence nA of subsets of X, we have   
**
1 1nnn nAA 
  
Theorem :  
Let C be a collection of close d rectangle of n, For RC, let R 
denote the volume of R. If *is defined by   
  *
1 1inf ; ,kk
k kAC C C k A 
     
For  ,nAAthen *is exterior measure on n. 
Proof :
T.S.T. * defined by   *
1inf ;kkkAC C is closed rectangle 
where nA is on exterior Measure on n. 
We first shows that   
  ;kk kV C C is closed set A C    
Where nA 
Let kR rectangle with side length ‘k’ and centre origin.   
Then 
1nk
kR munotes.in

Page 9

 
 Lebesgue outer measure  
9 for any 
1nkkAR  kRcovers A 

1;kkkCC closed rectangle
1k
kAC
  
We now show *0 
Let 0 
Let  0, ..... 0,nnyyR     be  a  rectangle  in n with &RR  R covers   By definition of *, * 
This is true for any 0 
  *0…………………………………………. (1)  
Let nAB 
T.S.T.**AB 
If kCCovers B, then kC covers A 
 
 11 1
11::
inf : inf :kk kk
kk kkk kkkkCB C CA CCB C CA C
 
 

               
 **AB …………………………………….. (2)  
Let nA be a sequence of subsets of n we show that   
  **
1 1nnn nAA 
  
Let 0 by the definition of *  a cover 1iniR of nA such that   munotes.in

Page 10

  
 Analysis II 
10 *
12innn
iRA   
Then 
11innjR
 covers 
1nnA 

 

*
1 11
*
1
*
11
*
122nn
n ni
n n
nnn
nn
n
nAR
A
A
A



 




          
 
 





 
                *
1nnA  ………………… …………………. (3)  
From (1) (2) & (3)   * is an exterior measure on n 
Note :
By above lemma, the exterior measure lemma attempts to describe 
the volume of a set nE by approximating it fr om outside. The 
set E covered by rectangle and if the covering gets finer, with fewer 
rectangles overlapping the volume of E should be close to the sum of 
the volumes of the rectangles.   
1.4 LEBESGUE OUTER MEASURE
Definition : *is called the Lebesgue exterior (or outer) measure on n and is 
denoted by *m. 
Now the consequences of the definition of exterior measure on n.  
1) If   kR are  countably  many  rectangles  and kER then *kmE V R 
2) For a given 0 there exist countable many rectangle kR with kERsuch that **
kkmE R mE E . 
munotes.in

Page 11

 
 Lebesgue outer measure  
11 Example 4:
Show that exterior (or outer) measure of a closed rectangle is its 
volume i.e. *mR V R where R is a rectangle or a 0nb in. 
Solution :
Let R be a closed rectangle in n 
   *tst m R V R  
Note that R covers R 
  by definition of *mR, we get 
  *mR V R……………………………………. (1)  
Let 0 
By defini tion *,mR a countable cover iR of closed rectangles 
of R.  
  *
12ii
iRm R
  
For each i choose an open rectangle iS such that iiRS and  
  12ii iVS VR  
Then 
11iiiiRR S 1iiS is an open cover of R  R is compact this open cover has a finite sub cover say   
  
1miiRS (after renaming)  
We have   
  
11miiiiVR VS v S  munotes.in

Page 12

  
 Analysis II 
12                     

1
1
1
*
*2222i i
i
i
iVR
VR
mR
mR


     
  
This is true for any 0 
 *VR m R 
 From (1) & (2)  
 *VR m R 
Example 5:
Show that exterior (or outer) measure of an open rectangle in  n is 
volume.  
Solution :
Let iS be  an  open  rectangle  them iiRS where iS is  closed 
rectangle iS is a cover of R.   
 by definition *
imR V S V R……………. (1)  
Let 0 be iR be a countable cover of closed rectangle of R such 
that  *
12i
iVR m R  for each  i choose an open  rectangle iS 
such that iiRS & 12iiVR 
Then 
11iiiiRR S 1iiS is an open cover of R  R is compact. This open cover has a sub cover say   
  
1miiRS (after renaming)  
 
 munotes.in

Page 13

 
 Lebesgue outer measure  
13 We have   

11miiiiVR VS VS  
                    
11
1
*
*2222i i
i
i
iVR
VR
mR
mR


 
     
  
This is true for any 0 
 *VR m R ……………………………….. (2)  
 From (1) & (2)  
 *VR m R 
Example 6:
Show that exterior measure of a point in n is zero.  
Solution :
Let 12, ,......,nn aa a a 
To show that *00m 
Let 0 then the closed rectangle.   
 11
11
11
22,22, ......................22nn
nnRa a
aa  
  
Covers a  By definition of *ma, we have *ma V R  
This is true for any 0 
 *00m 
 munotes.in

Page 14

  
 Analysis II 
14 1.5 PROPERTIES OF OUTER MEASURE
Exterior measure has the following properties.   
i) (Empty set) The empty set  has exterior measure *0m. 
ii) (Positivity) we have *0mA for every subset A of n. 
iii) (Monotonicity) If nAB, then **mA mB.  
iv) (Finite sub -additivity) If jjJA are a finite collection of subset 
of n then  **jjjJ jJmA m A   
v) (Countable sub -additivity) if jjJA are a countable collection of 
subsets of nthen  **jjjJ jJmA m A   
vi) (Translation invariance) If E is a subset of n and nx then **mx m  . 
 Let  ,nnxE 
 **tst m x m    
 Let 0, by definition of *m 
  a countable cover iR of closed rectangles in n for s.t. 
*
1i
iVR m E    ………………………………… (1)  
We now show that  
1iixE xR   
Let axE a xy 
1iiax yE R iaxR for some  i iax R   for some  i munotes.in

Page 15

 
 Lebesgue outer measure  
15 
1iiax R   

1iixE xR   By definition of *m, we have  
*
1iimx E V x R   ………………………………… (2)  
We now show that ii iVx R VR  
Let , ..... ,i iu iu iu iuRa b a b  then 11 11, ...... ,i i i in n in nxR x a x b a x b x    

1ni ij i ij ijVx R b x a x       
            
1nij ij ijba V R   ……………………………… (3)   By 1,2,3 we get  
**
11ii
iimx E V x R V R mE      
     **mx E mE   
This is true for any 0 **mx E mE   ………………………………….. (4)  
Let  &Ex E y x   
Then by (4)  
 **my E mE **mx x Em x E     **mE mx E  ……………………… ……………. (5)  
By (4) & (5)  **mx E mE  munotes.in

Page 16

  
 Analysis II 
16 Theorem :
Show  that  there  are  uncountable  subset  of  whose  exterior 
measure is zero.   
Proof :
Define canter set as follows   
Let 00,1C 
trisect 0C and remove the middle open interval to get 1C.  
i.e.  110, 2 3,13C 
          0,1 \ 1 3,2 3 
repeat this procedure for each interval in 1C we get 2C 20,1 \ 1 3,2 3 \ 1 9,2 9 \ 7 9,8 9112 20, , ,7 999 33C        
repeating this procedure at each stage we get a sequence of subsets iC of 0,1for 0,1,2i 
Note that each kC is a compact subse t of  and 02,CC C 
The Cantor set ‘C’ is defined as 
0iiCC 
C because  all  end  points  of  each rC is  inc  and  also  C  is 
uncountable  
We now com pute  


**
01
**
21
2
2
**
32 3
2
23211, 1332
9
1213321133122133 3mC mC
mC mC
mC mC  
   
 munotes.in

Page 17

 
 Lebesgue outer measure  
17 in general,   
22*23 13
22122 21 .....33 3 322 32 2......33 33 3k
k k
k
kmC
   
   
 

2
1
**
*
11213322
2 3313
221133
2
3
2
3k
k
k
k
kCC kmC mC kmC k
      

     
letting k, we get 
           *
*000mC
mC 
Theorem :
Show that exterior measure of n is infinite.  
Proof :
Let 0M and R be a rectangle s.t. VR M 
note that n By monotonicity of *m **nmR m 
But *mR V R M *nmM 
This is true for any 0M *nm  
 munotes.in

Page 18

  
 Analysis II 
18 Theorem :
If  E  and nF such  that ,0dE F then  show  that ** *mE F mE mF. 
Proof :
Let ,nEF be s.t. ,0dE F tst ** *mE F mE mF. By 
countable subodditivity property ** *mE F mE mF.. (1) 
Let 0 
By the definition of *,m countable Ri of closed rectangles in n 
for EF such that *
iV Ri m E F . ………………. (2)  
We categorize the collection Ri into 3 types :  
1) Those intersecting only E  
2) Those interescting only F  
3) Those intersecting both E & F  
Note  that  if  a  rectangle  intersect  both  E  &  F,  then ,0dR dE F subdivide  such  the  rectangles  into  rectangles 
whose diameter is  less than ,dE F. 
This subrectanlges intersect either E or F not both.    We  can  have  a  contable  collection 2R of  rectangles  which 
intersects either E or F but not both.   
Let 1;i Ii R E 
       2;i Ii R F 
12II ,iiIR covers E, we have  1*iiImE V R 
 
 munotes.in

Page 19

 
 Lebesgue outer measure  
19 Similarly, 2*iiImF V R 12**
1iiiI iI
i
imE mF V R V RVR
   
                 *mE F  (by (2)) 
This is true for any 0 ***mE mF mE F ……….. (3)  
From (1) & (3)  ** *mE mF mE F 
Theorem :
If  a  subset nE is a  countable  unit of  almost  disjoint closed 
rectangle .  
i.e. 
1iiER then show that  *
1iimE R.  
Proof :
Let 
1iiER where iR’s are almost disjoint closed rectangles.  
tpt *
1iimE R 
By countably subadditivi ty proposition of   
 ** *
1 11ii ii iimE m R mR V R 
    
(R is rectangle *mR V R) 
Let0, by definition of *,m a countable cover iR of closed 
rectangle n for E s.t. 
*
1i
iVR m E   
 munotes.in

Page 20

  
 Analysis II 
20 For  each i,  choose  open  rectangle iS s.t. iiSR & 
2iiiVR VS  
Note that ,0ijdSS for ij ** *ij i jmS S mS mS   for ij …………………….. (1)  
Using (1) finite no. of times, we get  **
1 1k kiiimS m S  
1ii
k
i
iSRE iSE By monotonicity   
**
11kk
ii
iimE mS V S k   
Let k 
*
11
12ii
ii
i
imE V S V R iVR
  
 
  
This is true for any 0 
*
1iimV R  ………………………………………….. (2)  
From (1) & (2)  
*
1iimV R 
Theorem :
Show that   
1) If *0mA then **mAB mB 
2) If *0mA B then show that **mA mB 
3) ** *\mA B mA mB  munotes.in

Page 21

 
 Lebesgue outer measure  
21 Proof :
1) As BA B 
 By monotonicity   
 **mB mAB …………………………………. (1)  
Also by countable subadditive of *m ** *mAB mA mB 
                *mB ……………………………………… (2)  
From (1) & (2)  **mAB mB 
2) If *0mA B tst **mA mB ** *\\\\wk A B A B B AmA B mA B mB A   
given that *0mA B **0mA B mB A 
but **00mA B mA B   
  *0mA B **0mA B mB A   
WKT **mA mAB 
 **mA mAB 
similarly we show that   
 **mB mAB **mA mB 
 
 
 munotes.in

Page 22

  
 Analysis II 
22 3) ** *\mA B mB mA 
Proof :
Since A and B are measurable sets   CA is also measurable and we have   /BAB A A B  
/CBA B A is measurable.   
&CBAis measurable  \BAB A union of disjoint measurable sets   ** * *\\mAB A mA mB A mB   ** *\mB A mB mA  
Theorem :
Let nE show that **inf ; &m E m E open    
Proof :
Let nE 
tst **inf ;nm E m E and open in     
Let  be open in n s.t. E 
Then by monotonicity of *m, **mE m *mE is lower bound of *;,m open    **inf ; ,m E m E open    ……………………. (1)  
Let 0, then by definition of *m  an countable cover iR of closed rectangle of E s.t.  *2i
iVR m E 
For each im let iS be open rectangles containing iR s.t. 12iiVR VS i  munotes.in

Page 23

 
 Lebesgue outer measure  
23  
Let 
1iS then  is open & 
11ii ER S   
 
** *
1 1
1iii
i
imm S m SVS 

    


 
     
11
1
*
*2222i i
i
iVR
VR
mE
mE


 
 

 
This is true for any 0. **
*inf ; ,mmm is open      **mm E  
Theorem :
For every subset E of ,n a zG 
Subset G of ns.t. GE & **mG mE 
Proof :
Let nE 
we first show that   **infmE m i E   and is open subset of n 
Let 0, 
Then for each  ,kk  open in n & kE s.t. **2kk mm E  munotes.in

Page 24

  
 Analysis II 
24 let 
1kkG G is G-set and GE By monotonicity  **mE mG ……………………………………… (1)  
Note that kG     k ** *2kk mG m mE    
This is true for any 0 **mG mE …………………………………… (2)  
By (1) & (2)  **mG mE 
Thoerem :
There exist a countable  collection jjJA of disjoint subset of  
such that  **jjjJ jJmA m A   
Solution :
Consider rational  and realy   ;xx  
We known that any two cosets are either identified or disjoint.  
We now show that if  A then 0,1A 
Let Ax 
Let q be rational number in ,1xx 
then 0,1xq 
Also, xqx A 0,1 0,1 xqA A   
For each \A choose munotes.in

Page 25

 
 Lebesgue outer measure  
25 0,1AxA 
Let ;A Ex A 
By construction 0,1E 
Let 
1,1qXq E 
We now show that   0,1 1,2X  
Let 1,1q Note that 0,1E  for any ,1 , 2xE qx    
This is true for any 1,1q 
Theorem :
There exist a finite collection jjJA of disjoint subset of  such 
that  **jjjJ jJmA m A   
Proof :
Consider  &   /xx  
We known that any two cosets are either identical or disjoint.  
We now show that if  A then 0,1A 
Let Ax 
Let q be a rational number in ,1xx then 0,1xq 
Also, xqx A 0,1 0,1 xqA A    
For each \A choose 0,1AxA 
Let /A Ex A 
 munotes.in

Page 26

  
 Analysis II 
26 By construction 0,1E 
Let 
1,1qXq E 
We now show that 0,1 1,2X  
Let 1,1q 
Note that 0,1E  for any ,1 , 2xE qx    
This is true for any 1,1q 
There exist a finite collection jjJA of disjoint subset of ¡ such 
that  **jjjJ jJmA m A 
U  
Consider Q¡ ||QxQ x ¡¡ 
We know that any two cosets one either identical  or disjoint.   
We know show that if |QA¡ then 0,1AQI  
Let Ax Q 
Let q be a rational number in ,1xx then 0,1xq .  
Also xqxQ A  0,1 0,1xq A A Q  II  
For each |QA¡ choose 0,1AxAI. 
Let ||AQEx A¡ 
By construction 0,1E 
Let 
1,1qQXq
 IU 
 munotes.in

Page 27

 
 Lebesgue outer measure  
27 We show that 0,1 1,2   
Let 1,1qQI 
Note that 0,1E ,1 , 2xE qx    1,2qE   
This is true for any 1,1qQI 
Let 0,1y 
Then  0yy y A (say) but AxA 
 
,0 , 1 1 , 11,10,1 0,1 1,2A
AA
Ayx y
yx y x
q
yqx qE
yx
XX     
  
 

     By monotonicity of *m ** *0,1 1,2mM X m  *13mx ………………………………………. (1)  
1,1qxq E  by  countable  subadditive  and  tran slation 
invariance of *m, we get. ** *
1,1 1,1qqmX mq E mE   
By *10mX 
        *0mE  By Aritimedian property  
n s.t. *1mEn 
 munotes.in

Page 28

  
 Analysis II 
28 Let I be a finite subset of 1,1 with cardinality 3n. 
Then  * 133qImE nn   by (1) **
qImx mq E 
Theorem :
Let &0nE   show that ** nmE m E 
Proof :  
To show that **,0nmE m E  
Let 0,   by definition of *,mE a countable cover of iR of closed 
rectangle in n, for E s.t. *
iVR m E  
11iiiiERE R  
Let 11, .... ,i i i in inRa b a b     
   1
1
1
11,....., ; ,
,....., ; ,
,....., ; ,
, ..... ,i n j ij ij
n j ij ij
n j ij ij
i i in inRx x x a b
xx x a bxx x a bab ab

   
  
   

 
      iR is a closed rectangle  niiVR V R 
1iiER by monotoricity & countable additive property we get  
 **
11 1
*nii inn
imE mR V R V RVR m E 
   
    
 
 munotes.in

Page 29

 
 Lebesgue outer measure  
29 This is true for any 0 ** nmE m E …………………………………….. (1)  
let 11EE    by (1) *1 * * 1
**11
nmE m EmE m E
  **nmE m E ………………………………… (2)  
From (1) & (2)  ** nmE m E 
1.6 SUMMARY
In this chapter we have learned about.   
 definition of -Algebra, bored algebra   
 measure on a  set. 
 The extension Measure  
 Lebesgue outer Measure * on n 
 Properties of lebesgue outer measgure.   
1.7 UNIT END EXERCISE
1) Let ,,,Xa b c d and 1,,AXd and 2,, ,AXd ,,abc check whether 1A & 2A are both algebra or not. Also 
check wheter 12 AA is an algebra or not.   
2) Show that exterior measure at any countable  subset of n is 
zero. Justify the converse?  
3) Show that the outer mesuration interval is its length.   
4) Show that if FI is a collection of -Algebra on X then F is also a -Algebra on X.   munotes.in

Page 30

  
 Analysis II 
30 5) If  a  subset nE is  a  countable  union  of  almost  disjoint 
closed rectangle then show that  *
1iimE R. 
6) If 1A and 2A are measurable subsets of the closed interval ,ab 
then 1A-2A is  measurable  and  if 12 AAthen 12 1 2m A A mA mA. 
7) Show  that  for  any  se t  A, **mA m A x where ;Ax yx yA   
8) Show that for any set A and any 0, there exist an open set 
O such that 0A and **0mm A .  
9) Compute the Lebesgue out er measure of 12 3B 
10) Prove that if the boundary of k has outer measure zero 
than  is measureable.   
11) Let be an arbitary collection of subsets of a se t. Show that for 
a given AC there exists a countable sub -collection AC of 
C depdending on A such that AAC. 
12) Check that *is an outer measure on R. Not   
 i) Let X be any seet and *:0 ,PXbe given by  
  i) *0A if A is countable  
                         =1 otherwise  
  ii) *0then be on infinite set1A if A finiteX
if otherwise
   
  iii)  *0A if A 
                          = 1 otherwise  
 


 munotes.in

Page 31

31 2
LEBESGUE MEASURE
Unit Structure :
2.1 Objective
2.2 Introduction
2.3 Lebesgue Measure
2.3.1 Properties of measurable sets
2.4 Outer Approximation by open sets
2.5 Inner approximation by closed sets
2.6 Continuity from above
2.7 Borel Cantelli Lemma
2.8 Summary
2.9 Unit End Exerises
2.1 OBJECTIVE
After going through this chapter you can able to know that
 Construction of Lebesgue measure in n.
 Lebesgue Measurable set in n.
 Properties of measurabl e sets.
 Existance of non -measurable sets.
2.2 INTRODUCTION
In the previous chapter we have studied about Lebesgue outer
measure *m is not countability additive and it cannot be measure. So
that we have to cover with subset of nfor which *mis countably
additive this subclass a collection at Measurable sets. Now we shall
define lebesgue measure of a set using the lebsgue outer measure
and discuss properties of lebesgue measure se t.
2.3 LEBESGUE MEASURE
Definition - (Lebesgue measurability)
Let E be a subset of n we say that E is Lebesgue measurable, or
measurable if we have the identity munotes.in

Page 32


Analysis II
32 ** *mA mAE mA E
2.3.1 Properties of measurable set s :
Following are the properties of measurable sets :
a) If E is measurable, then CnEE is also measurable.
b) Any set E of exterior (or outer) measure zero is measurable. In
particular, any countable set is measurable.
c) If 12&EE are measurable, then 12EE and 12EE are
measurable.
d) (Boolean algebra property) If 12, ,...nEE E are measurable then
1njE &
1njE are measurable.
e) (Translation in variance) If E is measurable & nx then xE
is also measurable, and mx E mE.
Lemma : (Finite additivity)
If 1k
j ijJEi E are a finit e collection of disjoint measurable sets
and any set A, we have
**jjjJ jJmA E mAE         
Further more we have
jjjJ jJmE m E 
Proof :
We prove by induction on K
The result is trivial when K=1
Assume result is true for k -1
We prov e result for K
Let
1kiiEE munotes.in

Page 33


Lebesgue Measure
33 tpt **
1kiimAE mAE
Now kE is measurable we have for nAE. ** *CkkmAE m AE E m AE E   
But kAE E=kAE
kEE 1
1CCkkk
i
iAE E A EEAE
 
  
** *
**
1
*
1kik
ki
i
k
i
imAE mAE mA EmAE mAE
mAE 
 



  The result is true for K
By introduction, it is true for ‘n’.
ii) Put nA
Theorem :
If AB are two measurable sets then BA is also measurable & mBA mB mA
Proof :
tst BA is measurable.
Suppose A & B are measurable  intersection of two measurab le set is measurable & complement
of a measurable set is measurable. CBA B Ais measurable
Note that BAB A
which is a disjoint union. munotes.in

Page 34


Analysis II
34 mis finitely additive mB mA mB AmBA mB mA  
Example 1 :
Let A be a measurable set of finite outer measure that is contained in
B show that ** *mB A mB mA  A is measurable
By definition for this B ** *
** *mB mBA mB AmB mA mB A *mA we get ** *mB A mB mA
Example 2 :
Suppose AEB where A & B are measurable sets of finite
measure show that if mA mB then E is measurable.  A & B are measurable CBA B A is measurable.
Note that BAB A AB.
which is a disjoint union. m is finitely additive, we get    
**
*0
|00mB mA mBA
mBA mB mA
AEB E AB A
mE A mB A m B A
mE A
  

EA is measurable EAE A is measurable

munotes.in

Page 35


Lebesgue Measure
35 Example 3 :
Show that if 1E & 2E are measurable then
12 12 1 2mE E mE E mE mE 
Solution :
Suppose 1E & 2E are measurable not that 12 1 2 1EE E E E which is a disjoint union.
By finite additie property of ‘m’ 12 1 2 1mE E mE mE E ……………………….. (1)
also 21 2 2 1EE EE E
which i s a disjoint union.
By finite additivity of ‘m’ 21 22 1mE mE E mE E ……………………….. (1) 21 2 1 2mE E mE mE E
subs in 1 12 1 2 1212 12 1 2mE E mE mE mE EmE E mE E mE mE 
Theorem :
Let 1kkE be a countable disjoint collection of measurable sets
prove that for any set A, **
1 1kkkmA E mAE        .
Proof :
Let 1kkE be countable collection of disjoint measurable sets.
Let nA
tpt **
1 1kkkmA E mAE        .
munotes.in

Page 36


Analysis II
36 By countable subadditivity property of *m we get,
**
11kkmA E m AE      
*
1kkmAE ………………………….. (1)
Also by finite additive property of m, we get

**
11
*
1
*
1kkkk
m
k
k
m
k
kmA E mA EmA E
mAE

      
     


 

This is true for all ‘m’
**
1 1kkk kmA E mAE 
        ……………………….. (2)
from (1) & (2)
**
1 1kkkmA E mAE 
      
Theorem :
Show that the union of a countable collection of measurable set is
measurable .
Proof :
Let 1kkA be a countable collection of measurable sets and
1kkEA.
tst E is measurable.
Define 1,BA & for 2k
1
1kkk iBAA

munotes.in

Page 37


Lebesgue Measure
37 Since finite union of complement m -set are measurable kBis measurable.
Clearly kB’s are pairwise disjoint
1
11 1
1
11
1
11
12 1 3 12
1....k
kk i
kk
Ck
ki
ki
Ck
ki
k
CC C
k
kBA A
AA
AA
AA A A AA
AE 





 
      
      
  

   






Example 4 :
Show that the intersections of a countable collection of measurable
set is measurable.  Let A be a subset of n and for n.
Define
1nk
kFB E
kBS are measurable nF is measurable  By definition ** *
**C
nnCC C Cnn n
CC
nmA mAF mAFFEF E A F A EmAE mAF   

 
 ** *CnmA mAF mAE  …………………….. (1)



munotes.in

Page 38


Analysis II
38 Now
**
1n
nkmAF mA B



*
1
*
1
*
1
*
1n
k
K
n
k
K
n
k
K
n
k
KmA BmA BmAB
mAB








 By (1)
** *
1nCk
kmA mAB mAE  LHS is independent of n, we have
** *
1nCkmA mAB mAE
But



**
1
*
1
*
1
** *k
k
kCmAE mA B
mA B
mABmA mAE mAE

       
     





 

As CAA EA E by countable subadditivity proposition of *m. ** *CmA mAE mAE ………………………. (3)
By (2) & (3) ** *CmA mAE mAE By definition E is measurable. munotes.in

Page 39


Lebesgue Measure
39
Example 5 : Countable additive
If jjJE are a countable collection of disjoint measurable sets then jjJE is measurable and jjjJ jJmE m E   Without loss of generality we ma y assume J suppose 1kkE be a countable collection of disjoint measurable set we first
show that kEE measurable let nkFE.
then by previous exercise we get E is measurable.
We now show that

1kmE mE
By subadditivity proposition of *m

**
1
*
1kkmE m E m EmE
 

1kkmE ………………………… (*)
By finite additivity property and monotonicity of *m
we have as nFE

1
1nnkk
nkkmE mF m EmE  LHS is independent of n, we get

1kkmE mE …………………………. (**) By countable additivity

1kkmE mE
munotes.in

Page 40


Analysis II
40 Example 6 :
Show that every closed and open rectangles in n are measurable.  Let R be a closed rectangle
tst R is measurable
Let 0, Let nA
by definition of *mA  a countable collection of closed rectangle 1iiR such that
1iiAR and *
1i
iVR m A  ……………………………. (1)
we dec ompose each iR into finite union of almost disjoint rectangle 1, ,....,iiikRS S such that 1
1k
ii
jijRR S.
1
iiRR R R and CijSR By finite add itive property of M.


1
1
1
11 1 1k
ii
j
k
ii
j
ii
iii jij
ijijmR mR mS
VR VR VS
VR VR VS

 
   
   

 
Note That 1iiR lover AR
111 1ii iii iAR R R R R R 
    ,ijSi j covers CAR
 *1*
1 1CiiVR m R m A R     and **
,Cij
ijmSm A R  munotes.in

Page 41


Lebesgue Measure
41 
**
,
*
,,ij
ijij ijij ijmAR m SmS VS 

 By (1)
 

*
1
11 1
**i
i
ki ijii jCmA V RVR VSmAR mAR

 


 


This is true for any 0 ** *CmA mAR mAR By definition R is measurable.
Example 7 :
Show that every open and closed subsets of n are measurable.  Let maxiKK
Let G be an open subset of n consider the grid of rectangle in n
of side length one and whose vertices have integer co -ordinates.
TST G is measurable.  Number of rectangle in grid is countable and one almost disjoint
we ignore all these rectangle contained in CG.
Now we have two types of rectangle (1) Those rectangle contained
in G (2) Those rectangle intersect with G & CG.
Let C = set of all rectangle contained in G.
We bisect type (2) rectangle into two rectangle each of its side
length is ½.
Repeat the process iterating this process for arbitrarily many times
we get a constable collections c of almost disjoint rectangle
contained in G.
By construction
RCRG
munotes.in

Page 42


Analysis II
42 Let xG G is open
We can choose sufficiently small rectangle in the bisection
procedure that contains x is entirely contained in G.
RC
RC
RCxRGRGR

 G is countable union of closed rectangle and hence G is
measurable.
2.4 OUTER APPROXIMATION BY OPEN SETS
Let nE such that E is measurable iff for 0, there is an open
set  containing E for which *mE .  Suppose E is measurable
Let 0
Suppose *mE By the definition of *mE  a countable collection of open re ctangles iR such that
1iiER
and *
1i
iVR mE  .
Let
1iiR which is countable union of opensets.  is open in n and E  is open, it is measurable E is measurable EE  which is a countably disjoint union ***
** *mm E m EmE m m E    munotes.in

Page 43


Lebesgue Measure
43 But

**
1 11
**
1ii ii ii
i
iRm m R V RmE V R m E 
    
   


Suppose *mE
For each k kKEE Rwhere
kRrectangle with centre origin and side length K
For each k
Then **
ki imE mR VR K     by first case for each K,  k open in n such that
*2kk k kkEEmE   .
Let
1kk  which is countable union of open set.  is open and E 

**
*
1
*
1
*
1
*
1
12CCk
k
k
k
k
k
kk
k
k
kmE m EmEmEmE
mE









 







Conversely suppose for a given 0  open set E such that *mE .
munotes.in

Page 44


Analysis II
44 Tst E is measurable
Let nA  is open  is measurable &* *mA mA mA  
Note that AE A A E  which is a disjoint union. 
** *
** ** *
** *
*mA E mA m A EmAE mA E mAE mA m A EmAE mA mA
mA       
   
 

 

This is true for any 0 ** *mAE mA E mA  E is measurable.
Exercise 8 :
Let nES.T., E is measurable iff for each 0 there is sG set G
conlaining E for which *0mG E.
Proof : suppose E is measurable By outer approximation by an open set.
For each n,  an open set kE s.t.
*1kmEk
Let
1kkG, then G is a G set ant EG munotes.in

Page 45


Lebesgue Measure
45 

**
1
*
1
*
1
*
*
1k
KCK
K
C
k
K
C
K
KGmm K EEmEmE
mE
mEk




 










This is true for all k *0mG E
Conversely, suppose  G set GE
s.t. *0mG E
tst E is measurable
Let nA G is countable int of measurable
Set G is measurable. By definition ** *CmA mAG mAG
Note that AE AG A G E
Which is a disjoint union ** *mA E mA G m AGE 
** * *
** *
*
*0mAE mA E mAE A G mAG EmAG mA G mG E
mA
mA    

  


munotes.in

Page 46


Analysis II
46 2.5 INNER APPROXIMATION BY CLOSED SETS
Theorem :
Let nE S.T. E is measurable iff for each 0, there is a closed
set FE for which *mE F E.
Proof :
Suppose E is measurable CEis measurable
Let 0 By outer approximative by open seet  an open set CE s.t. * CmE 
Let CEF is closed & FE.
Now ** * CmE F mEF mE 
**
*CC
CmE m E
mE 
  

Conversely suppose for 0,  closed set FE such that *mE F E
Tst E is measurable
Let nA F is measu rable
By definition ** *mA mAF mA F
Note that AE AFF AF   which is disjoint union. munotes.in

Page 47


Lebesgue Measure
47 

***
**
** *
** *
*mAE mAF m AEFmAE mA EmAF m AEF mA EmAF mE F mA F
mA
 
 
  



Example 9 :
Let E be a set of finite outer measure show that there is an F set F
& a G set G s.t. FEG & ***mF mE mG.
[Ans] E is measurable for given each k  open set kG and closed
set kF such that kkFE G and *1kkmGFk.
Let
1kkGG&
1kkFF.
Then G is SG set and F is F set and FEG.
We now show that ***mG mE mF GEG E which is
disjoint union. ** *mG mE mG E
Now CGE G E

1
1C
k
k
C
k
k
kk
kkGE
GEGE GEGF


     




 **1kk mG E mGFk 
This is tr ue for all k *0mG E **mG mE ……………………………………. (1) munotes.in

Page 48


Analysis II
48 


***
1
1
1
** 1C
C
k
kCCkk
k
k
k
k
kk
kkEFE F
mE mF mE F
EF E F E FEF E FEF
EF
GF
mE F mGFk




  




 





This is true for all k *0mE F
Example 10 :
Let E be a set of finite outer measure show that if E is not measure,
then there is an open set  containing E that has finite outer
measure and for which ** *mE m m E .
Solution :  Since E is not measurable
00 for any open set  containing E. *0mE  …………………………………… (1) E has finite outer measure.
By definition a countable collection of open rectangles 1iiR
such th at
1iiER and *01i
iVR mE  .
Let 0
1iiR 0E  & 0 open. By (1) *0mE …………………………. (2)
munotes.in

Page 49


Lebesgue Measure
49 By countable sub additivity of *m

** *0011
** *
00 0
** *
00ii
iimm R V R m E
mm Em E
mE m m E         
  

2.6 CONTINUITY FROM ABOVE
Theorem :
If 1kkB is a descending collection of measurable set and 1mB then 
1limkkkkmB m B

Proof :
12BB…. Be collection of measurable sets and 1mB
tst 
1limkkkkmB m B

Let 11kkAB B k  then 12AA…… and kA’s are measurable
(kB’s are measurable)
 11
11 1Ckk kkk kAB B B B      
1
1CkkBB

1
1Ck
kBB

Let
1kkBB
11
1C
k
kAB BB B    By continuity from bel ow 1 limkkmB B mA ………………………… (*)
munotes.in

Page 50


Analysis II
50 B and 1B are measurable 11mB B mB mB and 1kkmA mBB
=1kmB mB By (*) 
 11
1
1lim
lim
lim . . limkk
kkkk kkkkmB mB mB mB
mB mBmB mB i e B mB


 
   

Example 11 :
Show by an example that for continuity from aboe the assumption 1mE is necessary. Let ,kBk then 12...BB and kkmB we now show
that
1k
kB.

Let 
1,kk
kxB x B k k    
,xkk  is bounded by x, which is not possible.
 1
0 limk
kkkkBmm B m B

     
Example 12 :
Show that the continuity of measure together with finite additivity of
measure implies countable additivity of measure.  Let kE be a countable collection of disjoint meas ure sets.
Let
1kkiiAE munotes.in

Page 51


Lebesgue Measure
51 Then kA’s are measurable and 12AA……
Also
11 1 1kki kkk i kAE E 
     By continvity from below, 
1limkkkkmA m A
 .
But by the fi nite additive property
 
 

1 1
1 1
1
1 1lim limk k
ki i
i i
kkk ikkk i
k
i
i
kk
k kmA m E mEmE m A m EmE
mE m E 

  

 
 
  

 





Definition :
For a measurable set E, we say that a property holds atmost
everywhere on E, or it holds for almost all xE, provided there is a
subset 0E of E for which 00mE and the property holds for all 0xE E.
2.7 BOREL CANTELLI LEMMA
Let 1kkE be a countable collection of measurable sets for which

1k
kmE . Then almost all nx belong to Atmost finitely
many of the 'kEs.
Proof :
Let 0E be the subset of n such that 0 :nkEx x E for
infinitely many}
0
1kki kEE


munotes.in

Page 52


Analysis II
52 We sow that 00mE
Let kkkiFE
Then 12FF……. and 01k
kFE
Note that 
1i
imE
Let 
1iiLm E

1
lim
limikik ik
ikik
ikikmF m E m EmE
mE




   
 


1
1
1
1lim
limkiikik i
k
ikimE mELm E


      



1
0iiLm ELL
 

 00mE
Example 13 :
Show that there is a non -measurable subset in .
Solution :||Qx Q x 
WKT any two c osets are either identical or disjoint.
We now show that
If |AQ then 0,1A
Let AxQ munotes.in

Page 53


Lebesgue Measure
53 Let q be a rational number in ,1xx then0,1xq
Also xqxQA 0,10,1xqA
A
For each AQ choose 0,1AxA
Let AEx A Q
By construction 0,1E
Let
1,1 qXq E  For any ,1 , 2xE qx   1, 2qE 
This is true for any 1,1qQ
Let 1,1y then 0yy yQA (say)
but AxA AA Ayx qQ x A x yQ    for some qQ 
,0 , 1
1,1
1,10,1 0,1 1, 2A
A
Ayx
yx
qQ
yq x q E
yX X X  
 
  
      By monotonicity of *m ** *0,1 1, 2mm x m 
*13mx
If E is measurable then qE is measurable and mE mq E

 1,1 1,1 qQ qQmE m q E  
  munotes.in

Page 54


Analysis II
54 1,1 qQmX mE 
1,11313qQmX
mE
 

If 0mE then 1,10qQmE
 103 and if 0mE then 1,1 qQmE

Which is contradictin to (1) E is not measurable.
2.8 SUMMARY
In this chapter we have learned about.
 Lebesgue measureable sets.
 Construction of Lebesgue measurable sets in n
 Properties of Lebesgue measurable sets
 Non-measurable sets
2.9 UNIT END EXERISES
1. Show that the intersection of a countable collection of
measurable sets is measurable.
2. Show tht every open and closed subset of n are measurable.
3. Show that a set E is measurable if and only if for each 0,
there is a closed set F and open set  for which FE  and *mF 
4. Let E be a measur able set in n and mEshow that for any 0 there exist a compact set kE such that *mE K E.
5. If 1kkA is an ascendin g collection of measurable sets then

1limkkkkMA m A

6. The outer measure of , the set of all rational number is ‘0’.
7. Prove that the outer measure of countable set is zero.
8. Show that the outer Measure of an interval is its length.

 munotes.in

Page 55

    55 3
MEASURABLE FUNCTION
Unit Structure :
3.0 Objective  
3.1 Introduction  
3.2 Measurable Function  
3.3 Properties of Measurable Function  
3.4 Egoroff’s Theorem  
3.5 Lusin’s Theorem  
3.6 Summary   
3.7 Unit End Exercise  
3.0 OBJECTIVE
After going through this ch aper youcan able to know that  
 Measurable function  
 Properties of measurable function.   
 Concept of simple function  
3.1 INTRODUCTION
In the previous chapter we have studied about Lebesgue measure of 
sets of finite and infinite measures. Now we can discuss  Lebesgue 
Measurability  of  functions.  The  definition  of  measurability  of 
function applies to both bounded and unbounded functions. We also 
discuss simple function and its Approximation.    
3.2 MEASURABLE FUNCTIONS
Definition : We say a function  ‘f’ on n is extended real valued if it 
take value on .  
Definition :  A  property  is  said  to  hold  almost  everywhere  on  a 
measurable set E provided it holds on 0EE, where 0E is a subset of 
E for which 00mE 
 munotes.in

Page 56

  
 Analysis II 
56 Example 1 :  Let f be a function defined on a measurable subset  E of  n. Then the following are equivalent.   
1. For each real number C, the set :xE f x C is measurable.   
2. For each real number C, the set ;xE f x C is measurable.  
3. For each real number C, the set ;xE f x C is measurable.  
4. For each real number C, the set ;xE f x C is measurable.  
Solution : 12 
Suppose for any  C ,xf x Cis measurable ………. (*)  
Let C 
tst ;xf x C is measurable  
Note  that     1:;1xE f x C xE f x Cnn      which  is  a 
measurab le as countable intersection of measurable set is measurable 
(by (*))  :xE f x C  is measurable  23 
Suppose :xE f x C is measurable  ;;CxE f n C nE f x C    which  is  measurable  as 
complement of m easurable set is measurable.   ;xE f x C  is measurable.   34 
Suppose ;xE f x Cis measurable.   
Let C 
tst;xE f x Cis measurable.  munotes.in

Page 57

 
 Measurable Function  
57 Note that   
   1;;1xE f x C xE f x Cnn     which is measurable as 
countable intersection of measurable set is measurable set.   ;xE f x C  is measurable.   45 
Suppose ;xE f x Cis measurable.   
tst;xE f x Cis measurable.  
Note that   ;;CxE f x C xE f x C    which  is  measurable  as 
complement of measurable set is measurable.   ;xE f x C  is measurable.   
Definition :  An extended real -valued function  ‘f’ defined nE is 
said to be Lebesgue  measurable or  measurable, if its domain E is 
measurable and it satisfies one of the above four statement i.e. For 
each real number C, the set ;xE f x C is measurable.   
Example 2 :  Show that a real vaued function that is co ntinuous on 
its measurable domain is measurable.   
Solution :
Let ‘f’  be a continuous function   
tst ‘f’ is measurable   
Let C 
Note that, 1;,xE f x C f C   but ,C is open subset 
of  and  :fE is continuous.   1,fC is open  in E 1,fC G E  for some G is open subset of n but any open -
subset of n is measurable and  E is given as measurable.   1,fC G E  is measurable  munotes.in

Page 58

  
 Analysis II 
58 1;,xE f x C f C   is measurable    By definition  f is measurable.   
Example 3 :  Let f be an extended real valued function on  E. Sho that   
1) F is measurable on E and fg a.e. on E then g is measurable 
on E.  
2) For  a  measurable  subset  D  of  E,  f  is  measurable  on  E  iff  the 
restriction of F to D and ED are measurable.   
Solution :  Suppose f is measurable and fg a.e.  
Let :Ax E f xg x  
Then as fga.e. we have 0mA 
tstgis measurable.   
Let ,;Cx E g x C  ;; ExA g x C x g x CA      ;; ExA g x C x f x C f gA        ;;fgxA g x C xE f x C E A     
But ;xA g x C A  and 0mA  any subset of measure zero set is measurable   ;xA g x C  is measurable  f is measurable ;xE f x C  is measurable  E & A are measurable 0mA  EA is measurable  ;;xA g x C xE f x C E A     is measurable  ;xE g x C is measurable  g is measurable.   munotes.in

Page 59

 
 Measurable Function  
59 2)  ;;fxE x C xD f x CD     
                     ;xE f x C D  
For  |
|;|
|fDf ExE x CD
E  
                  |;;|E
D
EDxf x C
xE f x C  
 
Converse  ;; ; Exf x Cx D f x Cx f x CD          ;xD f x C  is  measurable  and ;Exf x CD  is 
measurable.  
As union of measurable set is measurable   fis measurable.   
3.3 PROPERTIES OF MEASURABLE FUNCTION
Let  f  and  g  be  measurable  func tion on  E  that  are  finite a.e.  on  E 
show that  
1) (Linearity) for any '' and '', Fg is measurable on F.  
2) (Product) fg is measurable on E.  
Solution :
Let 0 : Ex E f x    and gx  then  as  f  and  g  are 
finite a.e. on E we have 00mE  the restriction 0|fgE is measurable.   any exte nsion of ''fg as an extended real valued function to all 
of E is also measurable.   
Without loss by generality , we may assume that ‘f’ and ‘g’ are finite 
all over E.  
 munotes.in

Page 60

  
 Analysis II 
60 Now we first show that ''f is measurable fo r some . 
If 0 then fis a zero function then for any  C. ::
0
0xE Fx C xE f x Cif C
E if C        and E are measurable ;xE Fx C  is measurable  F is measurable.   
Suppose 0 ::xE Fx C xE f x C    
;0;0C xE f x
C xE f x
  …………………………(*)  f is measurable and C &  are red numbers.   * is measurable   ixE fx C  is measurable  fx is measurable  f is measurable ………………………. (1)  
We now show that fg is measurabl e. 
Let C 
If fg xC fx gx Cfx C gx   Q is dense in , then is an rQ such that fx r C gx  ;; :
rQxEf gx C xE f x r xE g x Cr         Q is  countable  and :xE f x ris  measurable  & :xE g x Cr  is measurable  munotes.in

Page 61

 
 Measurable Function  
61  countable union of measurable set is measurable  :xEf gx C   is measur able fg is measurable  …………………………… (2)  
From (1) & (2)  fg is measurable.   
2) tpt fg is measurable  
Note that   22212fg f g f g   ,fg are  measurable ,fgf is  measurable  it  is  enough  tst 
square of measurable function is measurable.   
Let 0C 
Then 2;;;xE fx C xE f x C xE f x C C         
Which  is union of two measurable set.  by definition, 2f is measurable,   
If 0C 2;xE fx C E  which is measurable.   In both the case 2f is measurable  fgis measurable.   
* Compos ition function fog
Example 3:
Let  g  be  measurable  real  valued  function  defined  on  E  and  f a 
continuous real  valued  function defined  on  all  of show  that  the 
composition fog is a measurable function on E.   
Solution :
Given; Let ‘g’ be measurable function and ‘f’ be continuous function 
on . 
Let ;gE be measurable and  :fR be a continuous  munotes.in

Page 62

  
 Analysis II 
62 Let C 
tst :fog is meas urable  
Note that ;x E fog x C 1 11,, fog C g f C   ,C is open subset and f is continuous 1,fC is open in . 1,0fC  for some open subset O  of . O is open in , we can write   
    
1,iiiOa b 
      
   
       11 1
1
1
1
1,,
,
::ii
i
ii
i
ii
igfC g a b
ga bxE g x a xE g x b
 




       

    

  :ixE g x a is  measurable  and :ixE g x b is 
measura ble.   countable union of measurable set is measurable set.   :x fog x Cis measurable  fog is measurable function on E.  
Check your Progr ess :
If f is measurable, then show that   
1) kf is measurable for all integer 1K 
2) f is measurable for a given constant  
3) f is measurable for a given constant  
4) f is measurable  
5) sup ,inf , lim sup lim infnn A n nnnfn fn fn fn  are measurable.   munotes.in

Page 63

 
 Measurable Function  
63 Definition :
For a sequence nf of functions with common domain E,a function 
f on E and a subset A of E, we say that   
1) The sequence nfconverges to ‘f’ point wise E, on A provided limnnfn f x for all xA 
2) The sequence nf converges to ‘f’ point wise a.e. on A provided 
it converges to F  pointwise on ABwhere 0mB 
3) The sequence nf converges to ‘f’ uniformly on A provided for 
each  0,N   such that nff on a for all nN.  
Theorem :
Let nf be a sequence of measurable function on  E that converges 
point-wise a.e. on E to the function f, show that f is measurable.   
Proof :  
Let 0E be a subset of E with 00mE and nff on 0EE.  00mE &  we  have  ‘f’  is  measurable  on  E  iff 0|fEE is 
measurable.  By replacing E by 0EE we may assume that the nf converges 
to f on E   
tst f is measurable  
Let C 
tst ;xE f x C is measurable  ; ; lim
nxE f x C xE f x C     but  lim
nfx C iff  ther e  are  natural  nos.  n  and  k  for  which 
1
jfx C j kn   
   1;;j xE f x C xE fx Cn        
                              1,kn  munotes.in

Page 64

  
 Analysis II 
64 note that  1;j
jkxE fx Cn   is measurable.   
Countable union of measurable set is measurable  ;xE f x C  is measurable.  
Simple Functions :
Definitions :
A real-valued functions defined on a measurable set E is said to be 
simple if it is measurable and takes only a finite number of values.   
If is simple, has domain E and takes the distinct values 1....,nCC 
then 
1knkEkC on E, where ;kkEx E x C .  
This  particular  expression  of is  a  linear  combination  of 
characteristic functions is called the canonical representation of the 
simple function .  
Theorem :  The simple Approximation Lemma
Let  ‘f’  be  a  measurable  real  valued  function  on  E.  Assume  ‘f’  is 
bound on E. Then  for each  0, there are simple function  and E defined  on  E  which  h ave  the  following  approximation 
properties : EEf  and 0EEE   on E.  
Proof :
Suppose  :fE R is bounded measurable nf fis bounded, 0Msuch that fx M x E  
Let ,cd be an open interval s.t. ,fE c d (fis bounded)  
Let 0 
Consider the partition  
0, ....ndCy y y  of ,cdwith 1,1kkyy k n    
Define 1
11,kknnEk E E Ekkyy  where 1
1,kk kEfy y
 munotes.in

Page 65

 
 Measurable Function  
65 Note that 1
1,kk kEfy y
 
    1
1
1;,
;
;:kk
kkkkxE f x y y
xE y f x yxE f x y xE f x y

   
     
which is measurable. (fis measurable)  kEare measurable,  1kn  & Eare measurable and takes only finite number of values   & E are simple functions.  
Let ,xE f x c d  k s.t. 1kkyf x y 1 Ek k Exy f xy x     …………………. (1)  EExf x x   
Also by (1) 1 0EE k kxx y y      
Theorem : The Simple Approximation Theorem
An  extended  real  valued  function  ‘f’  on  a  measurable  set  E  is 
measurable  if  and  only  if  there  is  a  sequ ence n of  simple 
functions on  E which  converges point -wise  on E to f and  has the 
property that nf on E for all ‘n’.   
If ‘f’ is non negative, we way choose n to be increasing.   
Proof :
Suppose f is measurable  
Case (1) Assume 0f 
Let ,n Define ;nEx E f x n  
Then |nfEis a bounded function.  By  simple  Approximation  Lemm a  for 1,n  simple  functions  & E such that  |
nfEn  and 10nnn   .  munotes.in

Page 66

  
 Analysis II 
66 We  extend n on  E  defining nxn if fx n construct  the 
sequences n. 
We now show that nf pointwise on E  
(1) If ‘f’ is finite  
N  such that fx 
  
   
 11N
NN
NN N
NxE
xf x x
fx x x xNfx x nn

  
    
     nxf x as n 
(2) If  f 
 fx N for any  N  limn
nnxnxf   
Case (2) ‘f’ is any measurable function  
Define 1max ,0xff x   1
1min ,0 fx f xfx f x f x  f and f are non -negative measurable function.    By Case (1),  a sequence of simple functions &nn s.t. 
nf pointwise and nf pointwise.   
nnf   pointwise  n and n are simple function n nn  a’s also a simple function n. 
 munotes.in

Page 67

 
 Measurable Function  
67 3.4 EGOROFF’S THEOREM
Theorem Statement (Assume E has finite measure )  
Let nf be a sequence of measurable functions one that converges 
pointwise on E t o the real valued function f. Then for each 0 
there is a closed set F contained in E for which nffuniformly 
on F and mEF. 
Proof :
Since nff pointwise on E,  for 0, and  ,xEK such that jfx f x j K    ………………………… (1)  
Since  we  want  to  get  a  region  of  uniform  convergence,  we 
accumulate all xEfor which the same N holds for a fixed  E. 
For any pair k & n define  
 1:,n
kjEx E f x f x j Kn       
Not  all nkE are  empty  otherwise  it  will  contradict  pointwise 
converges of nfxE. jf and f are measurable nkE is measurable.   
Note that from fixed n  1nnkkEE and 
1n
k
kEE   By the confinuity of measure.   lim  nkKmE mE mE is  finite,  i.e. mE,  for  the  above, 0,  such  that 
12n
k nmE ME  12nn
k nmEE  by countable additivity).   
By construction for each nnkxE 
 1jj nfx f n kn   …………………… (2)  munotes.in

Page 68

  
 Analysis II 
68 Let nnkAE 
We show that nff uniformly on A  
Let 0 choose 0
01nn  
By (2)  
 001jj nfx f n kn   on 00nnkE 00nKnAE 
 001jj nfx f n kn       on A 
nff uniformly on A.   
Now CmEA mE A 
                      nCn
k mE E   
                         1
1
1
122n
nCn
k
n
n
k
n
n
nmE E
mEE




 


 
nnkE are measurable and countable intersection of measurable set is 
measurable.   A is measurable.    a closed subset F of A s.t. 2mAF     
22mEF m EA AFmEA mAF
  
 
nff uniformly on A & FA 
nff uniformly on F.   
 munotes.in

Page 69

 
 Measurable Function  
69 Examples 4 : Let f be a simple function defined on E. Then for each 0,  there  is  a  continuous  function  g  on  and  a  closed  set  F 
contained in E for which fg on F & mEF. 
Solution :
Let f be a simple function defined on  E 
Let f takes the values 1,.....,naa be the distance values taken by ‘f’.   
1iniEifa   
Where :iiEx E F x a  
Note that 
1niiEE 'kas are distinct 'kEs are disjoint  f is mea surable 'ksF are measurable   
Let 0 
For each ,1 ,kk nkE is measurable  closed subset kF of kE 
such that   kkmE Fn 
Let 
1njjFF Fis closed   
 1
1
11
1C
n
C
k
k
n
C
k
k
nn
C
kj
kj
n
C
kj
jmEF mE F
mE F
mE F
mE F
mE F


            
            










 
 
 1
1
1
11n
k
n
C
kj
k
n
kk
k
nn
kk
kkmE F
mE F
mE Fn

      
      



  munotes.in

Page 70

  
 Analysis II 
70          nn 
   
Define  :gF by igx a if ixF  'iEs are disjoint 'iFsare disjoint gis well defined and fg 
on  F  we  now  show  that  ‘g’  is  continuous  on  f then 
11,ik
ikFF F F and kxF.  an open interval KIF containing ''x 1IF    0k
kk ygy a y Igy gx a a I         
 g is continuous at  x.  
This is true for any xF g is continuous on F.   
We can extend this continuous function ‘g’ on the closed set F to a 
continuous function on .  
Let the new function be ‘g’ then ‘g’ is continuous on  and gF 
on f and mEF.  
3.5 LUSIN’S THEOREM
Statement :
Let f be a real valued m easurable function defined on E then for each 0, there  is  a  continuous  function  g  on  and  a  closed  set  F 
contained  in E for which fg on f and |mE f. 
Proof :
Let f be a real valued measurable function defi ned on E.   
1) mE is finite   by simple Approximation theorem  a sequence n of simple 
function on E such that nfand nf on E n.  munotes.in

Page 71

 
 Measurable Function  
71 for  each  n there  is  a  continous  function ''ng on  and  a 
closed  set  fnf conained  in  E  for  which nng on nf & 
 12n nmEF . 
nf pointwise on E  
By Egoroff’s theorem   a closed set 0f contained in E such that nF uniformly on 0F and 02mEF .  
Let 
0nhFF 
F is closed as countable intersection of closed sets.   
Each n is uniformly on 0FF F n is continuous   f is continuous on F  
i.e. fF is continous.   
We can extend fF to a continuous function ‘g ’ on . 
Then fgon F  
and CnmEF mE F 
                        0
00
1
1
1
1|
2 2
22n
n
n
nn
nn
n
n
nmE F
EmE FFmE F m E F







                   



 
 munotes.in

Page 72

  
 Analysis II 
72 3.6 SUMMARY
In this chapter we have learned about  
 Concept of measurable functions.   
 Properties of me asurable functions  
 Simple functions & ith Approximation Theorem   
 Egoroffs Theorem and LUSIN Theorem of Measurable function.   
3.7 UNIT END EXERCISE
1. Pure that “every continuous function is measurable”.  
2. Show that the sum and Product of two simple function a re simple 
function  
3. Show  that  if ,0 ,f is  differentiable,  than 1f is 
measurable.  
4. Prove  that  if  f  is  a  measurable  function  X,  than  the  set 1fx X f x    is measurable.   
5. Prove that if :0 , 1f is continous atmost everywhere than f 
is measurable.   
6. State and prove Egoroff’s Theorem of measurable function.   
7. State  and  Prove  Lusin’s  Theorem  of  real  valued  measurable 
function.   
8. If ‘f’ is measurable then show that 1fCis measurable,  C. 
9. If f is measurable then show that ff is measurable.   
10. Show  that A is  Measurable  if  and  only  if  the  set  A  is 
measurable.   
 
  
 munotes.in

Page 73

    73 4
LEBESGUE INTEGRAL
Unit Structure :
4.0 Objectives 
4.1 Introduction  
4.2 Lebesgue Integral of Simple function  
4.3 Definition  
4.4 The General Lebesgue Integral  
4.5 Summary  
4.6 Unit End Exercise   
4.0 OBJECTIVES
After going throu gh this chapter you can  able to know that   
 Lebesgue integral   
 Lebesgue integral of a simple function  
 Lebesgue integral of a bounded measurable function  
 The general Lebesgue integral   
4.1 INTRODUCTION
We have already learned simple functions, measurable functions. 
Now  here  we  are  going  to  discuss.  Lebesgue  integral  on  this 
function.  Lebesgue  integral  over  come  on  the  class  of  all 
Riemannintegrable functions & the limitation of operations. So now 
we defined the general notation of the Lebesgue integral on n step 
by step.  
4.2 LEBESGUE INTEGRAL OF SIMPLE FUNCTION
Definition :
For  a  simple  function  with  canonical  representation 

1iniEixa Xdefined on a set of finite measure E, we define the 
integral of over E by  
1niiiEam E
. 
munotes.in

Page 74

  
 Analysis II 
74 Example 1 :  Let 1niiE be  a  finite  disjoint  collection  of 
measurable subset of a set of finite measure E. For 1,inLet 
ia.  
If 
1ni Eiia on E, than  
1niiiEam E
.  
Solution :
Let 
1iniEias.t. 'iEs are pairwise disjoint which may not be in 
canonical form.   
Let 1kjjbbe distinct elements of ,.....inaa.  
Define 
jjiiIFE where :ji jIi a a. 
Note that 'jFs are disjoint.   jjiiImF mE 
1jkjFjb is a canonical re presentation of .   By definition  
1kjjjEbm F
 
                             
1jkjiji Ibm E  

1niiiEam E
 
4.2.1 Theorem (Properties of integral simple function)
Let  and be simple functions defined on a set of finite measure.   
Then  
1) Linearity : For any ''and '' 
 EE E        
 munotes.in

Page 75

 
 Lebesgue Integral 
75 Proof :
Let 
1iniAia and 
1jnjBjb be canonival representation of  
and respectively.  
,1 ,1ij i jCA B i n j m    
then 
11nmi ijijaC  and 
11nmi ijijbC …………. (1)  By definition  
11nmi ijijEam C
 and  
11nmj ijijbm C 
By (1) 

11nmi j ijijab C         By definition  

11nmi j ijijEab m C   
   
                   
 11 11
11 11nm nm
i ij j ij
ij ij
nm nmi ij i ijij ij
EEamC bmCam C bm C

 
     
 

 
2) Monotonicity  
If  on E then 
EE 
Proof :
Suppose on E 
tst 
EE 
Let 0f  By linearity property   munotes.in

Page 76

  
 Analysis II 
76 0EE E Ef       
EE  
3) Additivity :
For  any  two  disjoint  subset  ,AB E with  finite  measure, 
AB A B   
Solution : ABAB E  
         AB
EABEE
AB  

 
4) Triangle inequality : If  is a simple  and 
EE. 
Solution :  Let  be a simple function and 
1ni Aiia be canonical 
representation  of . 
Then 
1ni Aiia which is a simple function.   
By Definition   

1
1n
i
iE
n
i
iEa m Aia m Ai



 
   
1n
i
ia m Ai  (by triangle inequality)  munotes.in

Page 77

 
 Lebesgue Integral 
77             
1
1n
i
i
n
i
i
i
Ea m Aia m Aia




 
5) If a.e. on E, then 
EE 
Solution :  Suppose  a.e. on F 
Let 0;Ex E a x   
Then 00mE and on 0;EE 
Let 
1ni Aiia and 
1nj Bjjb be canonical representation of  
and  representation.   By definition   

1n
i
iEa m Ai
 
             
 
 00
10011
0
1|n
ii i
i
nn
ii ii
ii
n
ii
iam A E A E Eam A E am A E EOa m A E E






 
     
0| EE E  
Similarly  
 
0 EE E on 0EE 
EE 
 munotes.in

Page 78

  
 Analysis II 
78 * Lebesgue integral of a bounded measurable function on a set of 
finite measure.   
We  now  extend  the  notion  of  integral  of  simple  function  to  a 
bounded measurable function on a set of finite measure.   
Let ‘f’ be a bounded real  -valued function defined on a set of finite 
measure  E.  We  define  the  lower  and  upper  Lebesgue  integral 
respectively, of ‘f’  over E to be  sup :
Esimple and f on E     
and inf :
Esimple and f on E    .  
Since ‘f’ is bounded by the monotonicity property of the integral for 
simple functions, the lower and upper integral are finite and the 
lower integral the upper integral.   
4.3 DEFINITION
A bounded function ‘f’ on a domain E of finite measure is said to be 
Lebesgue integrable over E if its upper and lower Lebesgue integrals 
over  E  are  equal.  The  common  value  of  the  upper  and  lower 
integrals is called  the Lebesgue integrals or simply the integral, of ‘f’ 
over E and is denoted by 
Ef. 
Example 2 :  Show that a non negative bounded measurable function 
on a set E of finite measure is integrable E of finite measure is 
integrable over  E. 
Solution : Let ‘f’ be a bounded measurable function defined on E. 
where mE. By simple Approximation Lemma  
For ,nsimple function n and n such that nfn and 10nnn  . 
11
nn n n
EE E EmEnn       
But, sup ; ,nEsimple f    and inf ; ,nsimple f      munotes.in

Page 79

 
 Lebesgue Integral 
79 0 inf ; ,
Esimple f      sup ; ,
Esimple f    
  1
nn
EEmEn    
This is true for any  n and mE 
inf ; ,
Esimple f      
sup ; ,
Esimple f    fis Lebesgue integrable over E.   
Example :
Let ‘f’ be a  bounded measurable function on a set E of finite 
measure. Show that if 0Ef then 0f a.e. 
Solution :  Suppose 0Ef and 0f 
tst 0fa.e. 
Let  1;nEx E f xn  then 1
nExf xn. 
By monotonicity,   

1010
0nE
E
n
nxfn
mEn
mE

 
But    0
1;0nnEx E f x E  0mE 0f a.e. over E. 
 munotes.in

Page 80

  
 Analysis II 
80 4.3.1 Properties of integral of bounded func tion :
Theorem : Let ‘f’ and ‘g’ be bounded measurable functions defined 
on a set of finite measure E then   
1) Linearity : for any '' and  
 EE Efg f g     
Proof : Let ,fg be bounded functions,  , 
tst
EE Efg f g    
It is enough tst 
EEff and 
EE Efg f g   
If 0 then 0f  
0
EEff  
Suppose 0 f is bounded fis bounded f is lebesgue integrable.   
Let 0 
Ef upper lebesgue integrable of ''f 
inf : &
inf : &
inf : ,
inf : ,E
E
Eis simple fsimple fsimple fsimple f

 
          

 
 

 
Ef 
Let 0 
Similarly for lower Lebesgue integral of f munotes.in

Page 81

 
 Lebesgue Integral 
81 EEff 
We now show that 
EE Efg f g   
Let 1 and 2 be simple functions on E such that, 1f and 2g then 1 + 2 is a simple function and 12fg    f and g are bounded fg is bounded.   fg is Lebesgue integrable   By definition  12 1 2inf ; ,
E
EE Ef g f g is simple    
     
 
This is true for any 1, 2simple with  f, and 2g fgis lower bound of  
  12 1 1 21 2
12 121 2
11 1 22 2;,, ,
inf ; , , ,
inf ; , inf ; ,EE
EE E
EE
EE Ef g simplef g f g simplef simple g simplefg
fg f g                    

 
 


 

  
For the reverse inequality  
Let 1 and 2be simple function for which 12&fg on E then  
12fg and 12 is simple  munotes.in

Page 82

  
 Analysis II 
82 12
12sup ; ,
EE
E
EEf g f g simple 

   




 
This is true for any 1, 2 simple with 12 &fg 
Efg is upper bound of   
  12 121 2
12 121 2
11 1 22 2;,, ,
sup ; , , ,
sup ; , sup ; ,EE
EE E
E
EE
EE E
EE Ef g simplef g f g simplef simple g simplefg
fg f g
fg f g  
  
       
 
 
 


 
 

 
2) Monotonicity : If fg on E, then 
EEfg 
Proof
Suppose f and g a re bounded mesurable function on a set E of finite 
measurable function and fg 
tst 
EEfg 
Let 0hfg h is non-negative bounded function.   By linearity  
EE E Egf g f h   munotes.in

Page 83

 
 Lebesgue Integral 
83 h is bounded & 0h 
h  where 0 simple function  
But  sup ; ,
EEh simple h    0* 00EE
EE E
EEhm E
gf h
gf   


 
3) Additivity : For any two disjoint subsets,  ,AB E with finite 
measure.  
 
AB A Bfff 
Proof :  
Let ‘f’ be bounded measurable function on a set E of finite measure 
and A,B disjoint subsets of E . 
tst 
AB A Bfff f is bounded measure.  ,,AB A Bff  are bounded measurable functions.   AB A BAB E EABE
AB
EE
AB A Bffffff
fff   


 




 
4) Triangle inequality : Let f be a bounded measurable function on a 
set of finite measure E, Then 
EEff. 
 munotes.in

Page 84

  
 Analysis II 
84 Proof :
Let f be bounded measurable function on a set E of finite measurable   f is measurable and bounded on E.   
Note that  fff    By monotonicity and linearity  
EE E
EEfffff
 
Example :
Let nf be a sequence of bounded measurable functions on a set of 
finite  measure  E.  Show  that  if nffuniformly  on  E,  then 
limnn
EEff 
Solution :  Let nf be a sequence of bounded measurable function 
on a set E of finite and nffuniformly on E   
tst limnn
EEff 
i.e. n
EEff 
nff uniformly on E   for a given 0, 0n 0,nxE fx f x nnmE    
i.e. 0nff n nmE   on E 
For 0nn 
 munotes.in

Page 85

 
 Lebesgue Integral 
85 Now nn
Eff f f 
                             n
Eff
mE
mEmE

   
By definition   
limnn
Eff. 
Example 5 :
Show by an example that the pointwise convergence alone is not 
sufficient to the passage of the limit under the integral sign.  
Solution : Example
Let 0f, function on 0,1E 
 Let 10, 0kKk  as k 
kf pointwise 1.0 ,1.1k
EKmkKk
 0Ef 
k
EEf 
Example 6 :  
Let f be a bounded measurable function on a set of finite measure E. 
Assume g is bounded and fg a.e. on E, 
Show that 
EEfg munotes.in

Page 86

  
 Analysis II 
86 4.4 THE GENERAL LEBESGUE INTEGRAL
For an extended real -valued function ‘f’ on E, the positiv e part f 
and the negative part f of f defined by   ,0f x ma f xand  ,0f x ma f x x E    
Then f and f are non-negative functions on  f ff f on E and ff f on E 
Thus f is measurable iff f and f are measurable.   
Example 7 :
Let f be a measurable function on E, show that f and f are 
integrable over E iff  f is integrable over E.  
Ans. Suppose f and f are integrable   
Ef  & 
Ef 
But ff f 
EE E Eff f f f     f is integrable  
Conversely, suppose f is integrable   
Ef  
But ff & ff 
EEff f    is integrable   
Similarly f is integrable.   

munotes.in

Page 87

 
 Lebesgue Integral 
87 Definition :
A measurable  function f on E is said to be integrable over E if f is 
integrable over E i.e. 
Ef. If ‘f’ is integrable over E, then we 
define the integral of ‘f’ over E by 
EE Eff f  
Example :
Let ‘f’ be integrable over E. Show that f is finite a.e. on E and 
0 EE Eff where 0EE and 00mE 
Solution :
‘f’ is integrable on E  f is integrable  
Ef  
Note that f is non negative integrable function.   
We now show that f is finite a.e. on E.   
Note that ;xE f x  
  ;xE f x x  ;;xE f x xE f x nn     
But by chebychev’s Lemma ………………………. (*)  
1;nmxE f x n fn   f is integrable, 
Ef is finite  
i.e. f ;0;0mxE f n n
mxE f n      munotes.in

Page 88

  
 Analysis II 
88 fx is finite a.e. on E  ff, we get f is finite a.e. on E  
Let 0EE s.t. 00mE By definition  
EE Eff f  
 
00||EE EEff (&ffare  non-negative  integrable 
functions) 
 00EE EEff f  
Example 9:
Define 23101fx xx   
                   00x 
Show that f is Lebesgue integrable on 0,1 and 1
23
013dxx. Find 
also ,2fx 
Solution :
 231x as 0x 
So f is unbounded in 0,1 its Lebesgue integrability define   
 231,fx nx if 3211xx 
                        = n if 321Ox n 
   0 if 0x 
Now   32
321|11
00 1 |,,,n
nf x n dx f x n dx f x n dx munotes.in

Page 89

 
 Lebesgue Integral 
89                  32
321|1
2|3
01 |
13
321
11 231 3n
nndx dxxnnn n
   
 
by definition of the Lebesgue integral of on bounded functions  
 11
00lim ,
2lim 33n
nf x dx f x n dxn

  
Lebesgue integrable define f or 2n 
231,2fxx if 2311xz 
           2    if 2310xz 
            0   if 0x          
4.5 SUMMAR Y
In this chapter we have learned about   
 Introduction concept of Lebesgue integral.   
 Lebesgue integral of complex valued Measurable functions  
 Lebesgue integral at a simple function.   
 Lebesgue integral on bounded Measurable function general 
Lebesgue integ ral  
4.6 UNIT END EXERCISE
1. Show that for  a finite family 1knf of measurable functions 
with  common  domain  E,  the  functions 1....nMax f f and 1....nMin f f also are measurable.   
2. Show that the sum and produ ct of two simple functions are 
simple.  munotes.in

Page 90

  
 Analysis II 
90 3. For every non -negative and measurable function f on 0,1 then 
show that 
  0,1 0,1inff dm dm. 
4. Prove  that  a  measurable  function 10,1fx L  if  and  only  if 
120 , 1 ;2nn
nmx fx    
5. If 10,1fLfind 21
2
0lim log 1
kfxK dxK 
6. Let f be a Lebesgue integrable function on X use the positive and 
negative part of f to prove that 
xxf dx f dx. 
7. Let f be a non -negative measurable function on X and  suppose 
that fMfor some constant M prove that 
Exf dx f dx for  
8. Calculate  Lebesgue  integral  for  the  function 
1
2where x is rationalfxwhere x is irrational  
   
9. Evaluate  5
0f x dx if  

00 111 2 3 422 3 4 5x
fx x x
xx    


 
by using Riemann and Lebesgue definition of the integral.   
10. Show  that  if  f  is  a  non -negative  measurable  function  then 0fa.e. on a set A iff 0Af dx 
11. If 1fx x if 01x  9then f is not Lebesgue integrable in 0,1 
12. Let F be a non -negative measurable function on and suppose 
that fMfor some constant M. Prove tha t Efd m E for 
any measurable  E. 
  munotes.in

Page 91

91 5
CONVERGENCE THEOREMS
Unit Structure :
5.1 Introduction
5.2 Measurable Functions
5.3 Lebesgue Theorem on Bounded Convergence
5.4 Limits of Measurable Functions
6.5 Fatou’s Lemma
5.6 Lebesgue integral of non -negative measurable function
5.7 The Monotone Convergence Theorem
5.8 Dominated Convergence Theorem
5.9 Lebesgue integral of complex valued functions
5.10 Review
5.11 Unit End Exercise
5.1 INTRODUCTION
In this section we analyze the dynamics of integrability in the case
when sequences of measu rable functions are considered. Roughly
speaking a “convergence theorem” states that integrability is
preserved under taking limits. In other words, if one has a sequence 1nnf of integrable functions, and if ‘f’ is some kind of a lim it of
the 'nfs then we would like to conclude that ‘f’ itself is in tegrable,
as well as the equality limnnffsuch results are employed in
two instances.
i) When we want to prove that some function ‘f’ is integrabl e. In
this case we would look for a sequence 1nnf, of integrable
approximation for f.
ii) When we want to construct and integrable function in this case,
we will produce first the approximates and then we will examine
the existence of the limit.
The first convergence result, which is some how prim ote, but very
useful in the following.
munotes.in

Page 92


Analysis II
92 5.2 MEASURABLE FUNCTIONS
Theorem :
Let ,,XA be a finite measure space, let , GC o and let :0 , 9 , 1nfX n be a sequence of measurable functions satisfying.
1) 12.... 0ff
2) lim ,nnfx x X  Then one has the equality lim 0nn
Af dx
.
Proof :
Let for each 0 and each intege r 1n, the set ;C
Ke nAx X f x  obviously, we have ,0 , 1nAA n   we
are going to use the following case .
Claim I :
For every 0, one has the equality lim 0nnA.
Fix 0, Let us first observe that (a) we ha ve the inclusion
12CCAA………………………………….. (II)
Second using (b) we clearly have the equality
1k
kA . Since is
finite using continuity property we have
 
1lim 0n
nnnAA  

     
Claim II :
For every 0, and every integer 1,n one has the inequality 0nn
Xf du a A x .
Fix  and n and let us consider the elementary functions. nAnAnh ax x  where EnBX A obviously, since x the
function nh is elementary integrable. By cons truction we clearly
have 0nnfh, so using the properties of integration, we get munotes.in

Page 93


Convergence Theorem
93 0nn n
XXf dx h dx a A BaA X
   
 
Using claim I & III it follows immediately that 0 lim inf lim supnnnn
XXfd fd X 
   
Since the last inequality hold for arbitary 0, we get lim 0nn
Xf du

5.3 LEBESGUE THEOREM ON BOUNDED
CONVERGENCE
Statement :
Let nfbe a sequence of functions measurable on a measurable
subset ,Aa bsuch that limnnfx f xthen if there exists a
constant M such that nfx Mfor all ‘n’ and for all ‘x’, we have limnn
AAf x dx f x dx.
Proof : limnnfx f x and nfx M fx M
The function ‘f’ is bounded and measurable
Hence Lebesgue integrable.
Now we shall show that lim 0nn
Af x f x dx

For a given 0, we define a partition A into disjoint measurable
sets 'kAs as follow s : 1: , , 1,2,3,.....kk n nAx f f f f k K       

munotes.in

Page 94


Analysis II
94 In particular, 1
21: ; 1, 2,3,.....: ; ; 2,3, 4,.....n
nAx f f n
Ax f f f f nn        
Clearly, 11 1kk kKK K n
nnAn n n nAA A APQm m P Q mP mQ 
       
 

 

Now
nnnn n
APQf f dx f f dx f f dx  …………. (1)
For each ‘n’, we have
nff  on nP and 2nnff f f m   on nQ
Thus, 2nn nAf f dx mP M mQ  
As n, limnnmP mA and lim 0nnmQ
Thus, n
Af f dx mA   being an arbitrary val ue limnn
AAf x dx f x dx
Example 1 :
Verify Bounded Convergence.
Theorem for the sequence of functions 1;1 ,
1n nfO x n
xn  .
111n nfx nxn  and x
Each nf being bounded and me asurable, the limit function. munotes.in

Page 95


Convergence Theorem
95 211lim lim
1nxnnfxexn  

It is also bounded and measurable. Now
  
 
 11
1
0
01
11
11
11 11n
nnxdx nnn xn
nnnn

    

 1
0lim
1
11
lim 11 11nnnndx
xn
nnnn

   

  1
lim 11 1nnn
nnn n
n   111eee

Similarly,
11 1
00 0
1
011lim
1
111x
n xn
xdx dx e dxe x
n
eeee


     
             

Hence Bounded convergence theorem is verified.
5.4 LIMITS OF MEASURABLE FUNCTIONS
If : , ;1,2,....nfn   is an finite sequence of functions then
we say that :,f  is the pointwise limit of the sequence nnf if we have limnnfx f x for each x. munotes.in

Page 96


Analysis II
96 For any sequence :,nf   we can define lim supnnf as the
function with value at ‘x’ given by
  lim sup lim supnknnk nfx fx  
Something th at always makes sense because supk
knfx decreases n
increases or atleast does not get any bigger as n increase. Suppose
that nf is a sequence of real number. Let A be the set of numbers
such that nff for some subsequence knf of nf. f is called a limit point of nf, so A is the set of all limit points of nf. Then suprem um and infimum of A are denoted by the
following lim inf inf , lim sup supnnnnfA f A .
5.5 FATOU’S LEMMA
Statement :
If nf is a sequence of non -negative measurable functions, then for
any measurable set E. lim inf lim infnnnn
EEf dx f dx 
Proof : We write lim inf
nfx fx
We recall that for any x, liminf inf infnnfx f where Ex is the set
of all limit points of nfx.
nff pointwise convergence on E
nff pointwise on 1,0EmEE
nff pointwise on 1E
1EE and 10mE
We may assume nff pointwise on E 'nfs are non -negative measurable and nff fis non -negative and measurable. munotes.in

Page 97


Convergence Theorem
97 Now to show that lim infnn
EEff
Let h be a bounded measurable function of finite support such that
0hf 0mE  where 0;0Ex E h x  h is bounded choose M such that hx M on E for n Define minnh,nhf.
Clearly 0nh is measurable bounded function and nhM. We can
now show that nha pointwise on 0E.
For 0xE h x f x
Case I :
hx f x 0fx h x 
nffpoint wise on E for 0fx h x 
0n such that 0nnfx f x n      00min ,n
nn
nnfx f x fxhx f x f x nhx h f h x n n
             
nhh point wise on 0E
Case II :
hx f x
Then nnhx fx on fx n
nffpoint wise on 0E
nhf h  pointwise 0E
By bounded convergence Theorem
For the bounded sequence nhrestricted to 0E munotes.in

Page 98


Analysis II
98 We have
00limnn
EEhh
 00
00lim lim
0, ; 0
lim lim inf lim infnnnn
EE E E
nnnnn
EE E Ehh h h
h on E E h on E Ehh h f 
 

      

This is true for any bounded measurable function with finite support
such that 0hf  By definition of
Ef
lim infnh
EEff
5.6 LEBESGUE INTEGRAL OF NON -NEGATIVE
MEASURABLE FUNCTION
Definition :
Let f be a measurable function defined on E. The support of ‘f’ is
defined as sup ; 0fx E f x .
Definition :
A measurable function f on E is said to vanish outside a set of finite
measure if  a subset 0E of E for which 0mE & 0f on 0EE. It is convenient to say that a function that vanishes outside a
set of finite measure has finite support. We have defined the integral of a bounded measurable function ‘f’
over a set of finite measure E. But mEand f is bounded and
measurable on E with finite. Support we can define its integral over
E by
0 EEff where 0mEand 0fon 0EE.
Definition :
For a non -negative measurable function f on E we define integral of
‘f’ over E by sup :EEhh  bounded; measurable of finite suppor t
and 0h f on E. munotes.in

Page 99


Convergence Theorem
99 Chebychev’s Inequality :
Statement :
Let f be a non -negative measurable function on E then for any 0.
  1;
Emx Efx f 
Proof :
Let: Ex E f x 
Case I : nm for each n define ,nEE n n. Then nnE.
Then n is bounded measurable function nmnEE  and nf
Note that 1nnEE and
1n
nEE  By continuity of measure. lim
limnmmn
nn
EEE
   n is bounded on E and nf by definition
Ef, we get
 n
EE
m
EfEf
 
Both side 
 1
EmE f
munotes.in

Page 100


Analysis II
100 Case II : mE
Define Eh then h is bounded measurable function hf  by definition of
Ef, we get EmE h f
 
  1
1;E
EmE fmx Efx f

  
5.7 THE MONOTONE CONVERGENCE THEOREM
Statement : Let nf be an increasing sequence on non -negative
measurable functions on A. If limnnfx f x then limnn
AAff.
Proof :
Letnf be an increasing sequence of non -negative measurable
functions and limnnff x i.e. it is convergent at pointwise to
f on A.
Now to show that limnn
AAff.
nff pointwise on A and 1 nnff n  nnff  on A
n
AAff on A
supn
AAff
lim supnn
AAff……………………………. (I)
By the Fatou’s lemma
lim infnn
AAff ……………………………. (II)

munotes.in

Page 101


Convergence Theorem
101 From I & II we get
lim inf lim sup
limnnnn
AA A
nn
AAff fff 

 
5.8 DOMINATED CONVERGENCE THEOREM
(Generalisation of Bounded Convergence Theorem)
Statement : Let nf be a sequence of measurable function on E.
Suppose there is a function ‘g’ that is integrable over E and
dominates nf on E in the sense that nfg on E for all n. If
nff pointwise almost everywhere on E,then f is integrable over
E and limnn
EEff.
Proof : nnfg on E and nff pointwise on E.
fg g
fg    f is measurable
nfg and 0n fgg f  and ngf gf  pointwise By Fatou’s lemma
liminf
liminf
limsupnnEEnEEgf gfff
 



limsupn
EEff …… ………………………… (I)
Similarly 0n gf & ngf gf  pointwise on E.  By Fatou’s lemma,
lim infnEEgf gf  munotes.in

Page 102


Analysis II
102 liminfnEE Egfg f 
lim infnEEff ……………………………. (III)
From I & II we get
liminf limsup
limnn
EE E
nn
EEff fff

 
Example 2 :
Check the convergence of 1;
0;nfx x nnxn 
Solution : Let 1;nfx x nn
0xn
Then 0nfxuniform ly on but 2;nf dx 1, 2,3,.....n
1lim lim 0nnnfxn  where xn
0 when xn lim 0nnfx uniformly on the whole real time.
Now,  211 1
22mmfxf xmm m    
Whenever 12M
Now  100 2nn
n
nnf x dx dx dx dxn         .
This emplies that uniform converges of nfx is not enough for lim limnnnnff  munotes.in

Page 103


Convergence Theorem
103 This equality is Lebesgue integration.
In general, is only due to dominated convergence of the sequence nfx. However on the set of finite measure uniformly convergent
sequence of bounded func tion are bounded convergent.
5.9 LEBESGUE INTEGRAL OF COMPLEX VALUED
FUNCTIONS
If f is a complex valued function on nEwe may write as fx u x i x where &uvare real functions called the r eal and
imaginary part of f.
A complex valued measurable function, :f u iv on E is said to be
integrable if 22
EEfx u x v x   and the integral of ‘f’
is given by
EEEfu i v
Theorem :
Show that a complex v alued function is integrable if and only if both
of its real and imaginary parts are integrable.
Proof :
Suppose :f u iv is integrable
22
22 2
22f
uvuu u u vuu v 
  
      uis integrable
Similarly vis integrable
Conversely
Suppose &uv are integrable
u  and V
munotes.in

Page 104


Analysis II
104 By Minkowski’s inequality
22 2 2fu vuv u vfu v       f is integrable.
Definiti on :
A measurable function :,nfE C E is said to be an 1L function
if
Ef.
Note : 1 nL {set of all complex valued function on n}
Definitio n : A family G of integrable function is dense in 1nL if
for any f and 0gG   so that
Efg 
Example 3:
Show that the continuous function of compact support is de nse in 1nL.
Solution :
To show that : The continuous function of compact support is dense
in 1nL.
i.e. tst for any 1fL and 0.  a continuous function ‘g’ on n with compact support such that ,fg  i.e. fg .
Let 1nfL
We may assume ‘f’ is real valued becaue we may approximate its
real and im aginary part independently.
In this can we write ff f.
Where 0f and 0f  It is enough to show the result 0f. 0f can be approximated by integrable simple functions. munotes.in

Page 105


Convergence Theorem
105 It is enough to show that the result for an integrable simple
functions. nA integrable simple functions is a Linear combination of
characteristic function.
It is eno ugh to show for Ef where E is a measurable set of finite
measurable.
Let 0 E is measurable  a compact set k and an open set  of n such
that KE  and | mk 
By Urysohn’s Lemma  a continuous function :gk such that 0gon |k& 1g
on K g is continuous function with compact support 1E gf g  |Ekand 0E g on outside |Ek 1| |
nEkgf m E k m k        continuous function of compact support such that gf .  Continuous function of compact support is dense in 1nL.
Example 4 :
Let 1nfLshow that ff
Solution : Let 1fL to show that ff
Let zf
If 0z then clearly 0fz z f  ff
If 0z
Define zz munotes.in

Page 106


Analysis II
106 1 and zz fz z f f     
Let fu i v
By definition 0fu i vfu i vfv
      fu ……………………………………….. (I) uu f f f  
By Monotonicity property uf ………………………………………….. (II)
By (I) and (II) ff proved
Example 5 :
Show that 1nL is complete in its metric.
Solution :
Let nf be a Cauchy sequence in 1nL for 0 0,n   such
that 01,mnff n n n     for each k
We can choose kn such that for ,kmn n112mnkff and 1kknn
then the sequence knf has the property that
112kknnkff
 .
Construct the series     12 132
11
1....kknnnnn
nn n
Kfn f x f x f x f x f x
fx f x fx
     munotes.in

Page 107


Convergence Theorem
107 and    
11
1kk nn n
Kgx f x f x f x  
Let kSg denote the thk partial sum of the series g then.
   
111
1iik
kn n n
iSg f x f x f x  
Then kSg is a seq uence of non -negative function converges
pointwise to g. 1 kkSg S g n  By Monotone Convergence Theorem g is integrable and limknSg g
Note that fg fg   ( g is integrable) f is integrable f is 1nL
Let kSf denote the thk partial sum of the series of f , then
   111
1ii
kK
kn n n
i
nSf fx f x fxfx 

 kSf f pointwise
knff pointwise
Now we show that
knff in 1nL
Note that
knff g k 
By Dominated convergence The orem
1lim 0lim 0k
knn
nnff
ff 
knff in 1nL munotes.in

Page 108


Analysis II
108 nf is Cauchy and has convergent subsequence knfconverges of f.
We get nff  Every Cauchy sequence in 1L is convergent. 1L is complete in its metric. Proved
5.10 REVIEW
In this chapter we have learnt following points.
 Limits of Measurabl e function
 Bounded convergence theorem of measurable function
 Monotone convergence theorem of measurable function.
 Fatou’s lemma of measurable function
 Dominated convergence Theorem
 Complex valued measurable function
 Compactness of 1nL
5.11 UNIT END EXERCISE
1. show by an example that the inequality in Fatou’s lemma may be
a strict inequality.
Example : Consider a sequence of function nnf defined on 0,1
by   220,11nnxfx xnx.
i) Show that nf is uniformly bounded on 0,1 and evaluate
 22
0,1lim1nnxdxnx 
ii) Show that nf doesnot converge uniformly on 0,1
Solution :
1) For all n for all 0,1x we have 2212 0n x nx  and
2210nx
Hence 221012nnxfxnx  munotes.in

Page 109


Convergence Theorem
109 Thus fx is uniformly bounded on 0,1
Since each nf is continuous on 0,1
f is Riemann integrable on 0,1
In this case Lebesgue integral and Riemann integral on 0,1.
Consider

 1
22 220
0,111nx nxdx dxnx nx
Put 221nx t
21
0112nt dtx


  22
22
0,1log 1 1log 112 2nnxdx nnx n n 
Using 1L Hospitalrule we get
2log 1log 02nnn
Hence
 22
0, 1lim 01nnxdxnx

ii) For each  
 22
0,10,1 lim 01nnxxnx 
Hence nff pointwise on 0,1
Now to show that nf does not converges to 0f uniformly on 0,1.
We find a sequence nx in 0,1.
Such that 0nx and xnfx00f as n, taking 1nxn
then 12nfx  .
Thus  1lim 0 02nnnfx f
  munotes.in

Page 110


Analysis II
110 Example 2 :
Evaluate 2
01limn n
x
nxe dxn
     
Solution : We know that
lim 1nxnxen     and 1111nnxx
nn     .
Also we have 1nxxen    
21nxxxeen        by Dominated convergence then to the function 1nxxen with
the dominating function xe
 
 2
0
2
0,1
0
2
0,1
0
0lim 1
lim 1 1
lim1 11n n
x
n
n
x
n
n
x
n
xxe dxn
xx e dxn
xx e dxn
e dx








      
      
      




2) Show by an example that monotone convergence theorem does
not hold for a decreasing sequence of functions.
3) Let 2:; 0nxfx x nn 
= 0 ; otherwise
Evaluate 
0limn
nnf x dx and 
0limn
nnf x dx are these equal?
4) 1002gx x  
= 1 112x munotes.in

Page 111


Convergence Theorem
111 2
21,0 11, 0 1k
kfx g x x
fx gx x   
To show that 00lim inf lim infnnnnf x dx f x dx 
5) If ;0 ,nfX is measurable for 1, 2,....n and
  
1n
nfx f xx X then show that
1n
nXXf dr f dr .
6) Use the dominated convergence theorem to find

1limnnf x dx where 31nxfxnx.
7) If nnab for all n, then show that lim inf lim infnnnnab .
8) State and prove bounded convergence theorem of measur able
function.
9) Use convergence theorem to show that  0,cosxft e t d ux
 is continuous.
10) Use the dominated, convergence theorem to prove that
22 1
0lim 0nx
nn xe dx
11) Use the dominated convergence theorem to show that
21
2 2
2
2lim 1n
x
n
RRxdx e dxn     
       

 munotes.in

Page 112

112 6
SPACE OF INTEGRABLE FUNCTIONS
Unit Structure
6.0 Objective
6.1 Introduction
6.2 Signed Measures
6.3 Hahn decomposition theorem
6.4 Complex valued Lebesgue measurable functions
6.5 The space L1 (µ) of integrable functions
6.6 Let’s sum u p
6.7 Unit end exercise
6.8 List of References
6.0 OBJECTIVE
After going through this chapter you will able to know:
 Signed measures is to generalize the concept of a traditional measure
in measure theory to allow for negative values.
 The Hahn decomposition theorem is to provide a fundamental result in
the theory of signed measures.
 Studying complex -valued Lebesgue measurable functions is to extend
the notion of measurability and integration to functions whose range is
the set of complex numbers.
 Studying th e space
(µ) of integrable functions plays a central role in
measure theory, functional analysis, and various fields of mathematics
and applied sciences.
6.1 INTRODUCTION
Till now our measures have always assumed values that were greater than
or equal to 0. In this chapter we will extend our de finition to allow for both
positive and negative values. signed measures extend the concept of
measures by allowing them to take both positive and negative values.
This decomposition provides a clear separa tion of the positive and
negative components of the signed measure, enabling a deeper
understanding of the measure's behaviour on different subsets of the space.
The sets A and B are unique up to null sets, meaning that any measurable munotes.in

Page 113


Space of Integrable Functions
113 subsets of A and B with measure zero can be added to or removed from A
and B without affecting the positivity/negativity of the measure.
The space L1 (µ) of integrable functions is a fundamental concept in
measure theory and functional analysis. It provides a rich f ramework to
study functions that are Lebesgue integrable with respect to a given
measure µ on a measurable space. The integration theory based on the
Lebesgue integral allows for a broader and more flexible class of functions
compared to the traditional Ri emann integral.
6.2 SIGNED MEASURES
A signed measure is a mathematical concept used in measure theory,
which is a branch of mathematics that deals with the study of measures.
Measures are used to assign a notion of size or volume to subsets of a
given set. In traditional measure theory, measures are non -negative,
meaning they take values in the real numbers and are non -negative for all
sets. However, in certain applications and contexts, it becomes useful to
work with more general measures that can take pos itive or negative
values, and these are referred to as signed measures.
Definition: Le(,)beameasurablespace.Asignedmeasureon(,)is a
function : such that
i) µ takes on atmostone of the values − ∞ or ∞.
ii) µ(∅)=0.
iii) If 1nnE is the sequence of pairwise disjoint set, then 11()nnnnEE 

Additionally, a signed measure can be decomposed into its positive and
negative variations:
i) {() , 0 }EMax E  is positive variation.
ii) { ( ),0}EMax E  is negative variation.
With these variations, the signed measure can be written as the difference
of two non -negative measures:
()EE   
It's important to note that a signed measure can take the value of positive
infinity, negative infinity, or be finite.
6.3 HAHN DECOMPOSITION THEOREM
The Hahn decomposition theorem plays a significant role in understanding
signed measures and provides a powerfu l tool for analysing their
properties and behaviour. It highlights the duality between positive and
negative parts of a signed measure, enabling deeper insights into the munotes.in

Page 114


Analysis II
114 structure of measures and their applications in various mathematical
contexts.
The Hah n decomposition theorem is valuable in several ways:
1. It allows us to analyze the positive and negative parts of a signed
measure separately, which can be beneficial in various applications.
2. It is a key step in proving other important results in measure th eory,
like the Jordan decomposition theorem.
3. It is used to establish the Radon -Nikodym theorem, which is a
fundamental result connecting measures and integrals in a more
general setting.
To prove the Jordan decomposition of a signed measure, we first show
that a measure space can be decomposed into disjoint subsets on which a
signed measure is positive or negative, respectively. This is called the
Hahn decomposition.
Definition: Let µ be a signed measure on ( X, ). A pair { P, N } of
elements in for which P is positive N is negative, P ∪ N = X and P ∩ N
= ∅ is called a Hahn decomposition of X with respect to µ.
Radon -Nikodym theorem for signed measures:
Let (, ,) be a
- finite measure space and v a finite signed measure
on measurable space (, ) that is absolute continuous with respect to.
Then there is a function fthat is integrable over X with respect to and
()Ev E fd for all .
Function fis uniqu e upto a set ofmeasure zero.
Definition: Two measures  and v on measurable space (, )are
Mutually Singular if there are disjoint A and B in M. For which XA B and () () 0Av B
Definition : The decomposition of signed measure ν on measure space (, )into the difference of two (nonnegative) measures given in the
Jordan Decomposition Theorem is called the Jordan decomposition of v
Lemma: Suppose that ν is a signed measure on a measurable
space(,)XA. If A ∈ and 0 < ν(A)< ∞, then there exists a positive subset
P ⊂ A such that ν(P)> 0.
Proof: First, we show that if A ∈ is a measurable set with |ν(A)| < ∞,
then |ν(B)| < ∞ for every measurable subset B ⊂ A. This is because ν takes
at most one infinite value, so there is no possibility of cancelling an
infinite signed measure to give a finite measure. In more detail, we may
suppose without loss of generality that ν : A → [−∞, ∞) does not take the munotes.in

Page 115


Space of Integrable Functions
115 value ∞. (Otherwise, consider −ν.) Then ν(B) ∞; and if B⊂A, then the
additivity of ν implies that
ν(B) = ν(A) − ν(A \ B)−∞
since ν(A) is finite and ν(A \ B∞.
Now suppose that 0 < ν( A) < ∞.
Let1= inf { ν(E) : E ∈ A and E ⊂ A}.
Then −∞ ≤ 1 ≤ 0, since ∅⊂ A. Choose A1⊂ A such that 1 ≤ ν(A1) ≤ 1/2
if 1 is finite, or µ( A1) ≤ −1 if 1 = −∞. Define a disjoint sequence of
subsets { Ai⊂A :i ∈N} inductively by setting 1= inf { ν(E) : E ∈ and E ⊂ A 111\i
jA
}
and choosing
⊂ A111\i
jA
such that 1 ≤ ν(Ai) ≤ 1/21
if −∞ <1≤ 0, or ν(Ai) ≤ −1 if 1= −∞.
Let 1,iiBA
 P = A \ B.
Then, since the
are disjoint, we have
1() ( )iivB vA

As proved above, ()vB is finite, so this negative sum must converge. It
follows that ()ivA ≤ −1 for only finitely many i, and therefore 1 is
infinite for at most finitely many i. For the remaining i, we have ()1 / 2 0iivA  .
So iconverges and therefore 1→ 0 as i → ∞.
If E⊂P, then by construction ν(E) ≥ 1 for every sufficiently large i ∈ N.
Hence, taking the limit as i → ∞ , we see that ν(E) ≥ 0, which implies that
P is positive. The proof also shows that,
since ()vB≤ 0, we have ν(P) = ν(A) − ν(B) ≥ ν(A) > 0 ,
which proves that P has strictly positive signed measure.


munotes.in

Page 116


Analysis II
116 Hahn decomposition theorem:
Statement: If ν is a signed measure on a measurable space (,)XA, then
there is a positive set P and a negative set N for ν such that P ∪ N = X and
P ∩ N = ∅. These sets are unique up to ν-null sets.
Proof: Suppose, without loss of generality, that ν(A) < ∞ for every A ∈A.
(Otherwise, consider −ν.)
Let m = sup{ ν(A): A∈A such that A is positive for ν},
and choose a sequence {iA : i∈N} of positive sets such that ν(iA) → m as
i → ∞. Then, since the union of positive sets is positive,
1iiPA
is a positive set.
Moreover, by the monotonicity of ν, we have ν(P) = m. Since ν(P) ∞, it
follows that
m ≥ 0 is finite.
Let N = X \P. Then we claim that N is negative for ν.
If not, there i s a subset A′⊂N such that ν(A′ ) > 0, so by above Lemma,
there is a positive set P ′⊂A′ with ν(P ′ ) > 0. But then P ∪P ′ is a positive
set with ν(P∪P ′ ) > m, which contradicts the definition of m.
Finally, if P ′, N′ is another such pair of positive and negative sets, then P \
P ′⊂P ∩ N ′ ,
soP \ P ′ is both positive and negative for ν and therefore null, and
similarly for P ′ \ P.
Thus, the decomposition is unique up to ν-null sets.
Remark: It is generally the case that the Hahn decomposition is not
unique.
In fact, let X = [0, 1] and let = P(X) . If 12 is the point mass at 1/2, then
if P = {1/2 } and N = [0, 1] \ {1/2}, then { P, N} is a Hahn decomposition
of [0, 1] with respect to µ. However, 1P = [0, 1/2 ] and1N = ( 1/2 , 1] is
also a Hahn decomposition.
In fact, if { P, N } is a Hahn decomposition of X with respect to µ and if
M∈ is null, then { P∪M, N \M} is a Hahn decomposition of X with
respect to µ.
Furthermore, if {11,PN} and {22,PN} are Hahn decompositions of X with
respect to µ, then
M = P1∆P2 = (P1∩ N2) ∪ (N1∩ P2) = N1∆N2 is a null set. munotes.in

Page 117


Space of Integrable Functions
117 Furthermore, since E ∩ P1 \ P2 ⊆ P1 ∆ P2 and E ∩ P2\ P1 ⊆ P1 ∆ P2, it
follows that
µ(E ∩P1) = µ(E ∩ P1 ∩ P2) = µ( E ∩ P2) for each E∈.
Similarly, µ(E ∩ N1) = µ(E ∩ N1 ∩ N2) = µ(E ∩ N2) for each E∈.
What is true however, as we shall see, is that every Hahn decomposition
induced a decompositi on of µ into the difference of two positive measures
and that any two Hahn decompositions induce the same decomposition
of µ.
Theorem (Jordan decomposition): If ν is a signed measure on a
measurable space (X,A) , then there exist unique measures ,:vv A
[0, ∞], one of which is finite, such that vv vand vv.
Proof: Let X = P ∪ N where P, N are positive, negative sets for ν.
Then v(A) = ν(A∩P), v(A) = −ν(A ∩ N) is the required decomposition.
The values of v are independent of the choice of P, N up to a ν-null set,
so thedecomposition is unique.
We call v and v the positive and negative parts of ν, respectively.
The total variation | ν| of ν is the measure |ν| = vv. We say that the
signed measure ν is σ-finite if | ν| is σ-finite.
6.4 COMPLEX VALUED LEBESGUE MEASURABLE
FUNCTIONS ON d
Complex valued Lebesgue measurable functions on d are an essential
concept in measure theory and functional analysis.
Complex valued measurable functions: A fun ction :df  is
complex -valued measurable if both its real and imaginary parts, Re( )fand ()lm f are measurable functions.
We then say that f is Lebesgue integrable if the function 22() () ()fx u x v x
(which is non -negative) is Lebesgue integrable in the sense defined
previously.
It is clear that () ()ux f x and () ()vx f x
Also, if ,0ab  it has 11 122 2()ab a b  so that () () ()fx u x v x . munotes.in

Page 118


Analysis II
118 We can deduce from these straightforward inequalities that a complex -
valued function is only integrable if its real and imaginary parts are
integrable . Then, the Lebesgue integral of f is defined by () () ()f x dx u x dx i v x dx   
Finally, if E is a measurable subset of d,and f is a complex -valued
measurable function on E, we say that f is Lebesgue integrable on E if XEf
is integrable on d, and we define EX Eff .
The collection of all complex -valued integrable functions on a measurable
subset E⊂ dforms a vector space over . Indeed, if f and g are
integrable, then so is f + g , since the triangle inequality gives |( f + g)(x) | ≤
|f(x)| + |g(x)|, and monotonicity of the integral Then, at that poin t, the
Lebesgue necessary of fis characterized by
EE Efg d f d g d       
Also, it is clear that if a ∈ and if f is integrable, then so is af. Finally, the
integral continues to be linear over.
Appro ximation of Lebesgue integrable functions by continuous
functions:
The main concept of the approximation is to demonstrate that a sequence
of continuous functions may roughly approach any Lebesgue integrable
function, both in terms of pointwise and integra l convergence. Because
continuous functions are easier to deal with and have a lot of attractive
qualities that make them conducive to analysis, this finding is very
relevant.
Formally, let f be a Lebesgue integrable function on a measurable set
E⊆n. Then, the approximation theorem states that for any ε > 0, there
exists a continuous function g on n such that the Lebesgue measure of
the set where f and g differ (i.e., {x ∈ E: |f(x) - g(x)| > ε}) is arbitrarily
small. In mathematical terms, we can find a sequence ( gn) of continuous
functions converging to f almost everywhere on E: lim ( ) ( ) 0nnfx g xd 
 
where μ is the Lebesgue measure.
6.5 THE SPACE
(µ) OF INTEGRABLE FUNCTIONS
An important observation about the algebraic properties of integrable
functions is their formation of a vector space. The fact that this vector
space is complete within the appropriate norm is an essential analytic fact.
Definition: If ( X, , µ) is a measure space, then the space 1()LX consists
of the integrable functions f :X → with norm munotes.in

Page 119


Space of Integrable Functions
119 1Lff d  
where we identify functions that are equal a.e. A sequence of functions
1{( ) }nfL X
converges in 1L , or in mean, to 1()fL Xif
1 0nnLf f f f d as n       
We also denote the space of integrable complex -valued functions f:X→
by L1(X). For definit eness, we consider real -valued functions unless stated
otherwise; in most cases, the results generalize in an obvious way to
complex -valued functions.
Let us consider the particular case of L1(d). As an application of the
Borel re gularity of Lebesgue measure, we prove that integrable functions
on d may be approximated by continuous functions with compact
support. This result means that L1(d) is a concrete realization of the
comple tion of Cc(d)with respect to the L1(d)-norm, where
Cc(d)denotes the space of continuous functions f :d →with
compact support. The support of f is defined by {: ( ) 0 }dsupp f x f x    
Thus, f has compact support if and only if it vanishes outside a bounded
set.
Properties of L1 integrable functions:
i) Measurability: L1 integrable functions are required to be
measurable. This mean s that the set { x: |f(x)| >M} must be
measurable for all M> 0.
ii) Linearity : If f(x) and g(x) are both L1 integrable functions, then any
linear combination of these functions, such as af(x) + bg(x) , where a
and b are constants, is also L1 integrable.
iii) Triangle Inequality: The integral of the absolute value of the sum
of two L1 integrable functions is less than or equal to the sum of their
individual integrals:
∫|f(x) + g(x)| dx ≤ ∫|f(x)| dx + ∫|g(x)| dx
iv) Dominating Function: If |f(x)| ≤ g(x) almost everywhere on the
measurable set E, and g(x) is L1 integrable, then f(x) is also L1
integrable.
v) Convergence in Measure: If a sequence of measurable functions
{nf(x)} converges to f(x) in measure, and each function nf(x) is L1
integrable, then the limit function f(x) is also L1 integrable:

lim ( ) ( ) 0 ( )nnf x f X dx f x dx
     
munotes.in

Page 120


Analysis II
120 vi) Product of
Functions: If f(x) is an L1 integrable function and
g(x) is a bounded measurable function, then the product f(x)g(x) is
also L1 integrable.
vii) Change of Measure : If f(x) is an L1 integrable function over a
measurable set E, and there exists a measurable function h(x) such
that h(x) ≥ 0 and ∫h(x) dx < ∞ , then the integral of f(x) with respect to
the measure defined by h(x) is also fin ite.
viii) Approximation: L1 integrable functions can be approximated by
simple functions (finite linear combinations of indicator functions).
ix) Density in L1: Under appropriate conditions, continuous functions
with compact support are dense in L1 space.
Proposit ion: The space L1 () is linear (over) and if f ∈ L1 () the
real and imaginary parts, Re f, Im f are Lebesgue integrable as are there
positive parts and as is also the absolute value, f.
Proof: We first consider the real part of a function f∈ L1 (). Suppose nf∈cc () is an approximating sequence. Then consider ng = Renf.
This is absolutely summable,
since nngf  and ( ) Re ( )nn n
nnfx f g f x 
Since the left identity holds a.e., so does the right and hence Re f∈L1 ().
The same argument with the imaginary parts shows that Im f∈ L1 ().
This also shows that a real element has a real approximating sequence and
taking positive parts that a positive function has a positive a pproximating
sequence.
Indeed, if f, g ∈ L1 () have approximating series nf and ng then nh = nf + ng is absolutely summable, nnnnnnhf g
And ( ) ( ), ( ) ( ) ( ) ( )nn n
nn nfx f x g g x hx f x g x     .
The first two conditions hold outside (probably different) sets of measure
zero, E and F, so the conclusion holds outside E ∪ F which is of measure
zero. Thus f + g ∈L1 (). The case of cf for c∈ is more obvious.
The proof that | f| ∈L1 () if f∈L1 () is similar but perhaps a little
trickier. Again, let {nf} be a sequence as in the definition showing that
f∈L1 (). To make a series for | f| we can try the ‘obvious’ thing. Namely
we know that munotes.in

Page 121


Space of Integrable Functions
121 1() () ()n
jj
jjf x f x if f x
   
so certainly, it f ollows that
1() () ()jj
jjf x f x if f x
   
So set
1
11 1 1() () ; () () ()kk
kj j j j gx fx g x fx fx x
       .
Then, for sure,
11() () () ()NN
kj j
kj jg x f x f x if f x
     
So equality holds off a set of measure zero and we only need to check that
{gj} is an absolutely summable series.
The triang le inequality in the ‘reverse’ form || v| − |w|| ≤ | v −w| shows that,
for k > 1,
1
11() () () ()kk
kj j k
jjgx fx fx fx

Thus ,
kk
kkgf  
so the gk’s do indeed form an absolutely summable series and holds almost
everywhere, so | f| ∈L1 ().
Riesz -Fischer theorem:
The Riesz -Fischer theorem, also known as the Riesz representation
theorem, is a fundamental result in functional analysis that establishes the
connection between certain types of continuous linear functional s and
elements of a Hilbert space. This theorem is named after the Hungarian
mathematician Frigyes Riesz and the German mathematician Ernst
Fischer, who both made significant contributions to its development.
Theorem: The vector space L1 is complete in i ts metric.
Proof: Suppose {nf} is a Cauchy sequence in the norm, so that nmff
→ 0 as n, m → ∞.
The plan of the proof is to extract a subsequence of {nf} that converges to
f, both pointwise almost everywhere and in the norm.
Under ideal circumstances we would have that the sequence {nf}
converges almost everywhere to a limit f, and we would then prove that
the sequence converges to f also in the norm. munotes.in

Page 122


Analysis II
122 Unfortunately, almost everywhere convergence does not hold for general
Cauchy sequences. The main point, however, is that if the convergence in
the norm is rapid enough, then almost everywhere convergence is a
consequence, and this can be achieved by dealing with an appropriate
subsequence of the original sequence.
Indeed, consider a subsequence 1knKf of {nf} with the following
property:
12, 1kk
n nkf f for all k
   
The existence of such a subsequence is guaranteed by the fact that
1kn nkff
  whenever n, m ≥ N(
), so that it suffices to take nk = N(2-k). We now consider the series whose convergence will be seen
below,
 1 1
1() () ()k n n nk
kfx f f x f x
 
And
1 1
1() () ()k n n nk
kgx f f x f x
  
And note that
11 1
11() () 2
kk
n n nk n
kkff x f x f


      .
So the monotone convergence theorem implies that g is integrable, and
since
≤ g, hence so is f. In particular, the series defining f converg es
almost everywhere, and since the partial sums of this series are precisely
the
(by construction of the telescopic series), we find that () () . .nkfx f x a e x 
To prove that nkf → f in L1as well, we simply observe that | f −nkf | ≤ g for
all k, and apply the dominated convergence theorem to get
10nk Lff as .0k
Finally, the last step of the proof consists in recalling that {nf} is Cauchy.
Given , there exists N such that for all n, m>N we have /2nmff .
If kn is chosen so that kn>N, and /2nkff , then the triangle
inequality implies
n n nk nkff ff f f         
whenever n>N. Thus {nf} has the limit f inL1.
Hence proved.
munotes.in

Page 123


Space of Integrable Functions
123 6.6 LETS SUM UP
In this chapter we have learn:
 Signed measures are particularly useful when dealing with functions
and distributions that have both positive and negative components or
values. They find applications in various areas, such as the study of
integration with respect to signed measures, Lebesgue -Stieltjes
integration, complex analysis, and the study of distributions in
functional analysis.

 The Hahn Decomposition Theorem addresses the decomposition of a
measurable space into two disjoint sets, where the positive and
negative components of a signed measure ar e concentrated separately.

 The space L1 (µ) mathematicians and scientists gain access to a
versatile class of functions that are essential for understanding the
behaviour and properties of integrable functions with respect to a
given measure µ.
6.7 UNIT E ND EXERCISES
1) A function f :  −→ is an element of L1 () if and only if it is
measurable and there exists F∈L1 () such that | f| ≤ F almost
everywhere .

2) Show that there are f∈L1 (d) and a sequence {nf} with fn
∈1()dL such that 1nLff→ 0, but nf(x) → f(x) for no x.

3) Show that f ∗ g is integrable whenever f and g are integrable, and that
11 1() () ()'dd dLL Lfg f g    
with equality if f and g are non -negative .

4) State and prove Riesz -Fischer theorem .
5) Prove that if f and g are integrable functions on X, and | g(x)| ≤ |f(x)| for
all x in X, then f and g are both in L1(µ) if and only if f is in L1(µ).

6) Let ν be a finite signed measure and let µ be a measure on ( X, ).
Then ν  µ if and only if for any ε > 0 there exists δ > 0 such that
|ν(E)| < ε when µ(E) < δ.

7) Show that if D is a Lebesgue measurable subset of d, then {: }d DLE L E D .

8) Prove that “ The space Cc(n) is dense in 1()nL. Explicitly, if
f∈1()dL, then for any > 0 there exists a function g∈Cc(n) such
that 1"L fg .
munotes.in

Page 124


Analysis II
124 9) If (X, , µ) is a measure space and ,vv: → [0, ∞] are measures,
one of which is finite, then show that ν = vv: is a signed measure.

10) Suppose that ν is a signed measure on a measurable space (X, ). If A
∈ and 0 < ν(A)< ∞, then there exists a positive subset P ⊂ A such that
ν(P)> 0.
6.8 LIST OF REFERENCE
 E. M. Stein and R. Shakarchi, Real Analysis, Princeton University
Press, 2005.

 S. Lang, Real and Functional Analysis, Springer -Verlag, 1993

 G. B. Folland, Real Analysis, 2nd ed., Wi ley, New York, 1999.

 F. Jones, Lebesgue Integration on Euclidean Space, Revised Ed.,
Jones and Bartlett, Sudberry, 200 6.


munotes.in